Estrategias de control de mejillones invasores:
una revisión
DOI:
https://doi.org/10.26461/23.08Palabras clave:
antiincrustante, depredación, luz ultravioleta, extractos naturales, macroincrustaciónResumen
El proceso de bioincrustación puede dañar varias estructuras construidas por el hombre y, junto con el agua de lastre, es el principal vector para la transferencia de especies invasoras en todo el mundo. El control de las especies invasoras, principalmente mejillones, se ha debatido durante mucho tiempo, pero las diferentes técnicas utilizadas aún tienen limitaciones. Por lo tanto, el propósito de esta revisión fue recopilar información sobre los avances en el control de la incrustación de mejillones invasores. Se utilizó la base de datos del portal de publicaciones Periódicos CAPES (Brasil), con la búsqueda de palabras clave: “(invasive mussel biofouling) AND control”. Se analizaron 53 artículos publicados entre 1999 y 2020. Se identificó que se han realizado más estudios experimentales en agua dulce que en otros sistemas acuáticos. La mayoría se llevó a cabo en laboratorios, involucrando las fases del mejillón juvenil y adulto. El control químico fue el más discutido en la literatura analizada en comparación con los controles físicos y biológicos. Entre los tipos de controles químicos se destaca el uso de extractos naturales por ser efectivo y causar menos daño al ambiente.
Descargas
Citas
Agostini, V.O., Macedo, A.J. y Muxagata, E., 2018. O papel do biofilme bacteriano no acoplamento bentopelágico, durante o processo de bioincrustação. En: Revista Liberato, 19(31), pp.1-134.
Agostini, V.O., Muxagata, E., Pinho, G., Pessi, I. y Macedo, A. J, 2021a. Bacteria-invertebrate interactions as an asset in developing new antifouling coatings for man-made aquatic surfaces. En: Environmental Pollution, pp.271. DOI: https://doi.org/10.1016/j.envpol.2020.116284
Agostini, V.O., Pinho, G., Muxagata, E., Macedo, A. J., Boccardi, L., Dabezies, M. J y Brugnoli, E., 2021b. Pinturas antiincrustantes derivados de plantas terrestres: una solución segura para el ambiente en el control de la bioincrustación. En: Innotec, 22, pp.559. DOI: https://doi.org/10.26461/22.01
Barbosa, F. y Melo, A., 2009. Modelo preditivo de sobrevivência do Mexilhão Dourado (Limnoperna fortunei) em relação a variações de salinidade na Laguna dos Patos, RS, Brasil. En: Biota Neotropica, 9(3), pp.407-412. DOI: https://doi.org/10.1590/S1676-06032009000300037
Boltovskoy, D. y Correa, C., 2015. Ecosystem impacts of the invasive bivalve Limnoperna fortunei (golden mussel) in South America. En: Hydrobiologia, 746, pp.81-95. DOI: https://doi.org/10.1007/s10750-014-1882-9
Cai, L.Z., Hwang, J.S., Dahms, H.U., Fu, S.J., Zhuo, Y. y Guo, T., 2014. Effect of the invasive bivalve Mytilopsissallei on the macrofaunal fouling community and the environment of Yundang Lagoon, Xiamen, China. En: Hydrobiologia, 741, pp.101-111. DOI: https://doi.org/10.1007/s10750-014-2012-4
Clements, J.C., Hicks, C., Tremblay, R. y Comeau, L.A., 2018. Elevated seawater temperature, not pCO2, negatively affects post-spawning adult mussels (Mytilus edulis) under food limitation. En: Conservation Physiology, 6(1). DOI: https://doi.org/10.1093/conphys/cox078
Comeau, L.A., Sonie, R., Guyondet, T., Landry, T., Ramsay, A. y Davidson, J., 2017. Behavioural response of bivalve molluscs to calcium hydroxide. En: Aquaculture, 466, pp.78–85. DOI: https://doi.org/10.1016/j.aquaculture.2016.09.045
Costa, R., Aldridge, D.C. y Moggridge, G.D., 2011. Preparation and evaluation of biocide-loaded particles to control the biofouling zebra mussel, Dreissena polymorpha. En: Chemical Engineering Research and Design, 89(11), pp.2322-2329. DOI: https://doi.org/10.1016/j.cherd.2011.02.027
Crego-Prieto, V., Ardura, A., Juanes, F., Roca, A., Taylor, J.S. y Garcia- Vazquez, E., 2015. Aquaculture and the spread of introduced mussel genes in British Columbia. En: Biological Invasions, 17(7), pp.2011-2026. DOI: https://doi.org/10.1007/s10530-015-0853-z
Cuthbert, R.N., Pattison, Z., Taylor, N.G., Verbrugge, L., Diagne, C., Ahmed, D.A., Leroy, B., Angulo, E., Briski, E., Capinha, C., Catford, J.A., Dalu, T., Essl, F., Gozlan, R.E., Haubrock, P.J., Kourantidou, M., Kramer, A.M., Renault, D. y Courchamp, F., 2021. Global economic costs of aquatic invasive alien species. En: Science of the total environment, 775. DOI: https://doi.org/10.1016/j.scitotenv.2021.145238
Dafforn, K.A., Lewis, J.A., y Johnston, E.L, 2011. Antifouling strategies: history and regulation, ecological impacts and mitigation. En: Marine Pollution Bulletin, 62, pp.453-465. DOI: https://doi.org/10.1016/j.marpolbul.2011.01.012
Davis, E.A., Wong, W.H. y Harman, W.N., 2015. Comparison of Three Sodium Chloride Chemical Treatments for Adult Zebra Mussel Decontamination. En: Journal of Shellfish Research, 34(3), pp.1029-1036. DOI: https://doi.org/10.2983/035.034.0329
Folino-Rorem, N., Stoeckel, J., Thorn, E. y Page, L., 2006. Effects of Artificial Filamentous Substrate on Zebra Mussel (Dreissena polymorpha) Settlement. En: Biological Invasions, 8(1), pp.89–96. DOI: https://doi.org/10.1007/s10530-005-0330-1
Gaag, M.V.D, Velde, G.V.D., Collas, F.P.L. y Leuven, R.S.E.W., 2018. Growth, Survival, and Mortality of Juvenile and Adult Alien Conrad's False Mussel Mytilopsis leucophaeata (Conrad, 1831) (Mollusca, Bivalvia, Dreissenidae) in a Brackish Canal. En: Journal of Shellfish Research, 37(1), pp.139-147. DOI: https://doi.org/10.2983/035.037.0112
Gaag, M.V.D., Velde, G.V.D. y Leuven, R.S.E.W., 2017. Settlement, Seasonal Size Distribution, and Growth of the Invasive Bivalve Mytilopsisleucophaeata (Conrad, 1831) (Dreissenidae) in Relation to Environmental Factors. En: Journal of Shellfish Research, 36(2), pp.417-426. DOI: https://doi.org/10.2983/035.036.0214
González-Bergonzoni, I., D'Anatro, A., Vidal, N., Stebniki, S., Tesitore, G., Silva, I. y Teixeira de Mello, F., 2019. Origin of fish biomass in a diverse subtropical river: An allochthonic-supported biomass increase following flood pulses. En: Ecosystems, 22(8). DOI: https://doi.org/10.1007/s10021-019-00370-0
Hertiani, T., Edrada-Ebel, R., Ortlepp, S., Soest, R.W.M., Voogd, N.J. y Wray, V., 2010. From anti-fouling to biofilm inhibition: new cytotoxic secondary metabolites from two Indonesian Agelas sponges. En: Bioorganic & Medicinal Chemistry, 18, pp.1297–1311. DOI: https://doi.org/10.1016/j.bmc.2009.12.028
Hicks, D. y Mcmahon, R., 2005. Effects of temperature on chronic hypoxia tolerance in the non-indigenous brown mussel, Pernaperna (bivalvia: mytilidae) from the Texas Gulf of Mexico. En: Journal of Molluscan Studies, 71(4). DOI: https://doi.org/10.1093/mollus/eyi042
Kobak, J., Poznanska, M. y Kakareko, T., 2008. Effect of attachment status and aggregation on the behaviour of the zebra mussel Dreissena polymorpha. En: Journal of Molluscan Studies, 75, pp.109-117. DOI: https://doi.org/10.1093/mollus/eyn046
Kobak, J., Poznańska, M. y Kakareko, T., 2012. Behavioural changes of zebra mussel Dreissena polymorpha (Bivalvia) induced by Ponto-Caspian gammarids. En: Biological Invasions, 14(9), pp.1851-1863. DOI: https://doi.org/10.1007/s10530-012-0197-x
Kojima, R., Kobayashi, S., Satuito, C.G.P., Katsuyama, I., Ando, H., Seki, Y. y Senda, T., 2016. A method for evaluating the efficacy of antifouling paints using Mytilus galloprovincialis in the laboratory in a flow-through system. En: Plos one, 11(12), e0168172. DOI: https://doi.org/10.1371/journal.pone.0168172
Lepoutre, A., Milliote, N., Bonnard, M., Ladeiro, M.P., Rioult, D., Bonnard, I., Bastien, F., Faassen, E., Geffard, A. y Lance, E., 2018. Genotoxic and Cytotoxic Effects on the Immune Cells of the Freshwater Bivalve Dreissena polymorpha Exposed to the Environmental Neurotoxin BMAA. En: Toxins, 10(3). DOI: https://doi.org/10.3390/toxins10030106
Li, S., Chen, Y., Gao, Y., Xia, Z. y Zhan, A., 2019. Chemical oxidants affect byssu adhesion in the highly invasive fouling mussel Limnoperna fortunei. En: Science of the Total Environment, 646, pp.1367-1375. DOI: https://doi.org/10.1016/j.scitotenv.2018.07.434
Liu, W., Xu, M., Zhang, J. y Zhang, T., 2020. Survival and attachment of biofouling freshwater mussel (Limnoperna fortunei) to environmental conditions: potential implications in its invasion, infection, and biofouling control. En: Limnology, 21, pp.245–255. DOI: https://doi.org/10.1007/s10201-020-00607-1
Lockwood, B.L. y Somero, G.N., 2011. Invasive and native blue mussels (genus Mytilus) on the California coast: The role of physiology in a biological invasion. En: Journal of Experimental Marine Biology and Ecology, 400(1-2), pp.167-174. DOI: https://doi.org/10.1016/j.jembe.2011.02.022
Mabrouk, S.B., Reis, M., Sousa, M.L., Ribeiro, T., Almeida, J.R., Pereira, S., Antunes, J., Rosa, F., Vasconcelos, V., Achour, L., Kacem, A. y Urbatzka, R., 2020. The Marine Seagrass Halophila stipulacea as a Source of Bioactive Metabolites against Obesity and Biofouling. En: Marine Drugs, 18(2), pp.88. DOI: https://doi.org/10.3390/md18020088
Matsui, K., Fumoto, T. y Kawakami, H., 2018. Testing the repellent effects of construction materials on the attachment of the invasive golden mussel, Limnopernafortunei, in a Japanese urban tidal river. En: Limnology, 20, pp.131-136. DOI: https://doi.org/10.1007/s10201-018-0559-x
Matsuo, T., Mizuno, Y. y Cho, H., 2009. Monitoring of pipe clogging by mussels utilizing an optical fiber AE system. En: Journal of Acoustic Emission, 27.
Murray, C.C., Pakhomov, E.A. y Therriault, T.W., 2011. Recreational boating: a large unregulated vector transporting marine invasive species. En: Diversity and Distributions, 17(6), pp.1161-1172. DOI: https://doi.org/10.1111/j.1472-4642.2011.00798.x
Nakano, D., Kobayashi, T. y Sakaguchi, I., 2010. Predation and depth effects on abundance and size distribution of an invasive bivalve, the golden mussel Limnopernafortunei, in a dam reservoir. En: Limnology, 11(3), pp.259-266. DOI: https://doi.org/10.1007/s10201-010-0314-4
Olabarria, C., Gestoso, I., Lima, F.P., Vázquez, E., Comeau, L.A., Gomes, F., Seabra, R. y Babarro, J.M.F., 2016. Response of two mytilids to a heatwave: the complex interplay of physiology, behaviour and ecological interactions. En: Plos One, 11(10), e0164330. DOI: https://doi.org/10.1371/journal.pone.0164330
Ozkan, A. y Berberoglu, H., 2013. Adhesion of algal cells to surfaces. En: Biofouling, 29(4), pp.469-482. DOI: https://doi.org/10.1080/08927014.2013.782397
Paolucci, E., Cataldo, D. y Boltovskoy, D., 2009. Prey selection by larvae of Prochiloduslineatus (Pisces: Curimatidae): indigenous zooplankton versus veligers of the introduced bivalve Limnopernafortunei (Bivalvia: Mitilidae). En: Aquatic Ecology, 44, pp.255-267. DOI: https://doi.org/10.1007/s10452-009-9263-6
Perepelizin, P.V. y Boltovskoy, D., 2011. Thermal tolerance of Limnoperna fortunei to gradual temperature increase and its applications for biofouling control in industrial and power plants. En: Journal of Bioadhesion and Biofilm Research, 27(6), pp.667-674. DOI: https://doi.org/10.1080/08927014.2011.594504
Phillips, S., Darland, T. y Systema, M., 2005. Potential economic impacts of Zebra Mussels on the hydropower facilities in the Columbia River basin: prepared for the Bonneville Power Admin. Portland: Pacific States Marine Fisheries Commission.
Piola, R.F. y Hopkins, G.A., 2012. Thermal treatment as a method to control transfers of invasive biofouling species via vessel sea chests. En: Marine Pollution Bulletin, 64(8), pp.1620-1630. DOI: https://doi.org/10.1016/j.marpolbul.2012.05.028
Prakash, S., Ramasubburayan, R., Iyapparaj, P., Arthi, A.P.R., Ahila, N.K., Ramkumar, V.S., Immanuelb, G. y Palavesam, A., 2015. Environmentally benign antifouling potentials of triterpene-glycosides from Streptomyces fradiae: a mangrove isolate. En: RSC Advances, 5, pp.29524 - 29534. DOI: 10.1039/C4RA15335A
Pucherelli, S.F., Claudi, R. y Prescott, T., 2018. Control of biofouling in hydropower cooling systems using HOD ultraviolet light. En: Management of Biological Invasions, 9(4), pp.451-461. DOI: https://doi.org/10.3391/mbi.2018.9.4.08
Rajagopal, S., Venugopalan, V., Velde, G. y Jenner, H., 2006. Control of Modiolid Mussels in Cooling Water Systems by Continuous Chlorination. En: Archives of Environmental Contamination and Toxicology, 51(2), pp.215-222. DOI: https://doi.org/10.1007/s00244-005-0257-7
Ribeiro, S.M., Rogers, R., Rubem, A.C., Gama, B.A.P., Muricy, G. y Pereira, R.C., 2013. Antifouling activity of twelve demosponges from Brazil. En: Brazilian Journal of Biology, 73(3), pp.501-506. DOI: https://doi.org/10.1590/S1519-69842013000300006
Rice, M.A., Rawson, P.D., Salinas, A.D. y Rosario, W.R., 2016. Identification and salinity tolerance of the western hemisphere mussel Mytellacharruana (d’orbigny, 1842) in the philippines. En: Journal of Shellfish Research, 35(4), pp.865-873. DOI: https://doi.org/10.2983/035.035.0415
Rosa, D.M., Gaspar, M.R.C., Silva, F.A. y Pompeu, P.S, 2019. Impacts of predation by piapara Megaleporinus obtusidens (Valenciennes, 1837) on the population densities of the invasive golden mussel Limnoperna fortunei (Dunker, 1857). En: Biological Control, 129, pp.158-163. DOI: https://doi.org/10.1016/j.biocontrol.2018.10.012
Sahu, G., Satpathy, K., Mohanty, A., Biswas, S., Achary, M. y Sarkar, S., 2013. Larval abundance and its relation to macrofouling settlement pattern in the coastal waters of Kalpakkam, southeastern part of India. En: Environmental Monitoring and Assessment, 185, pp.1951-1967. DOI: https://doi.org/10.1007/s10661-012-2679-9
Schaefer, R., Claudi, R. y Grapperhaus, M., 2010. Control of zebra mussels using sparker pressure pulses. En: Journal American Water Works Association, 102(4), pp.113-122. DOI: https://doi.org/10.1002/j.1551-8833.2010.tb10096.x
Schultz, M.P., 2007. Effects of coating roughness and biofouling on ship resistance and powering. En: Biofouling, 23(5), pp.331-341. DOI: https://doi.org/10.1080/08927010701461974
Schultz, M.P., Bendick, J.A., Holm, E.R. y Hertel, W.M., 2011. Economic impact of biofouling on a naval surface ship. En: Biofouling, 27(1), pp.87-98. DOI: https://doi.org/10.1080/08927014.2010.542809
Schwindt, E. y Bortolus, A., 2017. Aquatic invasion biology research in South America: Geographic patterns, advances and perspectives. En: Aquatic Ecosystem Health & Management, pp.322-333. DOI: https://doi.org/10.1080/14634988.2017.1404413
Siless, G.E., Garcia, M., Perez, M., Blustein, G. y Palermo, J., 2017. Large-scale purification of pachydictyol A from the brown alga Dictyota dichotoma obtained from algal wash and evaluation of its antifouling activity against the freshwater mollusk Limnoperna fortunei. En: Journal of Applied Phycology, 30(1), pp.629-636. DOI: https://doi.org/10.1007/s10811-017-1261-9
Silva, I., Naya, D., Mello, F.T., D’Anatro, A., Tesitore, G., Clavijo, C. y Gonzáles-Bergonzoni, I., 2021. Fish vs. Aliens: predatory fish regulate populations of Limnoperna fortunei mitigating impacts on native macroinvertebrate communities. En: Hydrobiologia, 848, pp.2281-2301. DOI: https://doi.org/10.1007/s10750-020-04421-9
Somma, A., Nogueira, L., González-Madina, L. y Langone, J.A., 2021. Dinámica larval del mejillón dorado Limnoperna fortunei en el embalse de Aguas Corrientes, Río Santa Lucía, Uruguay. En: INNOTEC, 21, pp.132-152. DOI: https://doi.org/10.26461/21.06
Soroldoni, S., Abreu, F., Castro, I.B., Duarte, F.A. y Pinho, G.L.L., 2017. Are antifouling paint particles a continuous source of toxic chemicals to the marine environment? En: Journal of Hazardous Materials, 15(330), pp.76-82. DOI: https://doi.org/10.1016/j.jhazmat.2017.02.001
Thomas, K.V., McHugh, M., Hilton, M. y Waldock, M., 2003. Increased persistence of antifouling paint biocides when associated with paint particles. En: Environmental Pollution, 123, pp.153-161. DOI: https://doi.org/10.1016/S0269-7491(02)00343-3
Turner, A., 2010. Marine pollution from antifouling paint particles. En: Marine Pollution Bulletin, 60, pp.159-171. DOI: https://doi.org/10.1016/j.marpolbul.2009.12.004
Uliano-Silva, M., Dondero, F., Otto, T.D., Costa, I., Lima, N.C.B., Americo, J.A., Mazzoni, C.J., Prosdocimi, F. y Rebelo, M.F., 2018. A hybrid-hierarchical genome assembly strategy to sequence the invasive golden mussel, Limnoperna fortunei. En: Giga Science, 7(2). DOI: https://doi.org/10.1093/gigascience/gix128
Vieira, J. y Lopes, M., 2013. Size-selective predation of the catfish Pimelodus pintado (Siluriformes: Pimelodidae) on the golden mussel Limnoperna fortunei (Bivalvia: Mytilidae). En: Zoologia, 30(1), pp.43-48. DOI: https://doi.org/10.1590/S1984-46702013000100005
WoRMS, 2020. World Register of Marine Species. [s.l.]: WoRMS. [Consulta: 28 de julio de 2020]. Disponible en: http://www.marinespecies.org/
Xu, M.Z., Darrigran, G., Wang, Z.Y., Zhao, N., Lin, C.C. y Pan, B.Z., 2015. Experimental study on control of Limnoperna fortunei biofouling in water transfer tunnels. En: Journal of Hydro-environment Research, 9, pp.248-258. DOI: https://doi.org/10.1016/j.jher.2014.06.006
Yuan, W.S., Walters, L.J., Brodsky, S.A., Schneider, K.R. y Hoffman, E.A., 2016. Synergistic Effects of Salinity and Temperature on the Survival of Two Nonnative Bivalve Molluscs, Perna viridis (Linnaeus 1758) and Mytella charruana (d’Orbigny 1846). En: Journal of Marine Biology, 2016(1), pp.1-14. DOI: https://doi.org/10.1155/2016/9261309
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 Mikael Luiz Morales Pereira, Ivna Maria Bastos Vasconcelos, Alexandre José Macedo, Erik Muxagata, Grasiela Leães Lopes Pinho, Vanessa Ochi Agostini
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
Los autores del manuscrito declaran conocer y aceptar los siguientes términos de responsabilidad:
Haber participado lo suficiente en el trabajo como para hacer pública la responsabilidad por su contenido.
Que el manuscrito representa un trabajo original que no fue publicado ni está siendo considerado por otra revista para su publicación, en parte o en forma íntegra, tanto impresa como electrónica.
Que en caso de ser solicitado, procurará o cooperará en la obtención y suministro de datos sobre los cuales el manuscrito esté basado.
Declara que la información divulgada que pudiera pertenecer a un tercero cuenta con la autorización correspondiente.
Autorización para la publicación y compromiso de cita de primera publicación
Los autores/as conservan los derechos de autor y ceden a la revista INNOTEC / INNOTEC Gestión el derecho de la primera publicación, con el trabajo registrado con la licencia de atribución Creative Commons Reconocimiento-NoComercial 4.0 Internacional. Creative Commons, que permite a terceros utilizar lo publicado siempre que mencionen la autoría del trabajo y a la primera publicación en esta revista sin fines comerciales.
El autor se compromete a realizar la cita completa de la edición institucional de esta primer publicación en las siguientes publicaciones -completas o parciales- efectuadas en cualquier otro medio de divulgación, impreso o electrónico.
Los autores/as pueden realizar otros acuerdos contractuales no comerciales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en esta revista (p. ej., incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en esta revista.
Se permite a los autores/as publicar su trabajo en Internet (por ejemplo en páginas institucionales o personales) antes y durante el proceso de revisión, ya que puede conducir a intercambios productivos y a una mayor y más rápida difusión del trabajo publicado (vea The Effect of Open Access). A su vez los autores/as autorizan al LATU a publicar el trabajo en su repositorio digital.
Los conceptos y opiniones vertidos en los artículos son de responsabilidad de sus autores.
Este obra está bajo una licencia Reconocimiento-NoComercial 4.0 Internacional.