Utilidad de los códigos de barras de DNA en la identificación de plantas melíferas asociadas a la miel monofloral de Sabal yapa producida en el este de Yucatán, México

Autores/as

  • Kelly Cristina Durán Escalante Departamento de Botánica, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Yucatán. Mérida, México https://orcid.org/0000-0002-7432-8776
  • Juan Javier Ortiz Díaz Departamento de Botánica, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Yucatán. Mérida, México https://orcid.org/0000-0002-8007-8427
  • Juan Pablo Pinzón Esquivel Departamento de Botánica. Facultad de Medicina Veterinaria y Zootecnia. Universidad Autónoma de Yucatán, Campus Ciencias Biológicas y Agropecuarias. Mérida, México https://orcid.org/0000-0002-0964-2996
  • María Amanda Gálvez Mariscal Departamento de Alimentos y Biotecnología. Facultad de Química. Universidad Nacional Autónoma de México. Ciudad de México, México https://orcid.org/0000-0003-4180-5449

DOI:

https://doi.org/10.26461/26.01

Palabras clave:

miel, rbcL, ITS2, trnH-psbA

Resumen

Las plantas melíferas son fuente natural de néctar y polen para las abejas, por lo que sus granos de polen están presentes en la composición de la miel. El estudio melisopalinológico de la miel de Sabal yapa producida en Yucatán mostró que 18 especies contribuyen de manera importante en la composición de la miel. En este estudio utilizamos plantas melíferas asociadas a la miel de Sabal para evaluar el potencial de tres códigos de barras (rbcL, ITS2 y trnH-psbA) en la identificación de especies para confirmar el origen botánico y la autenticidad de la miel. También evaluamos el éxito de amplificación y secuenciación de cada código de barras. En total se generaron 38 secuencias: 10 para rbcL, 13 para ITS2 y 15 para trnH-psbA. El éxito de amplificación para los marcadores fue: trnH-psbA (94.73 %), ITS2 (84.21 %) y rbcL (52.63 %). El éxito de secuenciación para los marcadores fue: rbcL (100 %), trnH-psbA (88.9 %) e ITS2 (87.5 %). La eficiencia en la identificación de especies para ITS2 y rbcL fue de 46.15 % y 30 %, respectivamente. La eficiencia de trnH-psbA para identificar especies fue de 13.33 %. Las secuencias generadas en este trabajo permitirán la construcción una biblioteca de códigos de barras de plantas melíferas confiable y en la medida que se enriquezca, se podrá tener una base sólida para estudios de metabarcoding en la miel de la Península de Yucatán

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Aghayeva, P.; Cozzolino, S.; Cafasso, D.; Ali-zade, V.; Fineschi, S. and Aghayeva, D., 2021. DNA barcoding of native Caucasus herbal plants: potentials and limitations in complex groups and implications for phylogepgraphic patterns. In: Biodiversity Data Journal, 9, e61333. DOI: https://doi.org/10.3897/BDJ.9.e61333

Alfaro-Bates, R.; González Acereto, J.; Ortiz Díaz, J.; Viera Castro, F.; Burgos Pérez, A.; Martínez Hernández, E. and Ramírez Arriaga, E., 2010. Caracterización palinológica de las mieles de la Península de Yucatán. Mérida, México: UADY-CONABIO. ISBN: 978-607-7573-42-5.

Ajmal, A.M.; Gyulai, G.; Hidvégi, N.; Kerti, B.; al Hemaid, F.M.A.; Pandey, A.K. and Lee, J., 2014. The changing epitome of species identification – DNA barcoding. In: Saudi Journal of Biological Sciences, 21(3), pp. 204-231. DOI: https://doi.org/https://doi.org/10.1016/j.sjbs.2014.03.003

Bafeel, S.O.; Arif, I.A.; Bakir, M.A.; Khan, H.A.; Al Farhan, A.H.; Al Homaidan, A.A.; Ahamed, A. and Thomas, J., 2011. Comparative evaluation of PCR success with universal primers of maturase K (matK) and ribulose-1, 5-bisphosphate carboxylase oxygenase large subunit (rbcL) for barcoding of some arid plants. In: Plant Omics Journal, 4(4), pp.195-198.

Bell, K.L.; de Vere, N.; Keller, A.; Richardson, R.T.; Gous, A.; Burgess, K.S. and Brosi, B.J., 2016. Pollen DNA barcoding: current applications and future prospects. In: Genome 59(9), pp.629-640. DOI: https://doi.org/10.1139/gen-2015-0200

Barcode of Life Data Systems, BOLD Systems, 2023a. Barcode of Life Data Systems v4 [Online]. Ontario: BOLD Systems. [Accessed: May 22 of 2023]. Available at: https://www.boldsystems.org/index.php

Barcode of Life Data System v4, BOLD Systems, 2023b. UADY DNA Barcoding of melliferous plants in the Yucatan Peninsula (Tizimin) [Online]. Ontario: BOLD Systems. [Accessed: June 22 of 2023]. Available at: https://www.boldsystems.org/

Barcode of Life Data Systems, BOLD Systems, 2023c. Barcode of life data systems handbook. A web-based bioinformatics platform supporting the DNA barcoding of animal, plant, and fungal species [Online]. Ontario: BOLD Systems. [Accessed: May 22 of 2023]. Available at: http://www.boldsystems.org/libhtml_v3/static/BOLD4_Handbook_FinalVersion_Feb2023.pdf

Bolson, M.; Smidt, Ed.; Brotto, M.L. and Silva-Pereira, V., 2015. ITS and trnH-psbA as efficient DNA barcodes to identify threatened commercial woody angiosperms from Southern Brazilian Atlantic rainforests. In: PLOS ONE, 10(12), e0143049. DOI: https://doi.org/10.1371/journal.pone.0143049

Bru, D.; Laurent, F.M. and Philippot, L., 2008. Quantification of the detrimental effect of a single primer-template mismatch by real-time PCR using the 16s rRNA gene as an example. In: Applied and Environmental Microbiology, 74(5), pp. 1660-1663. DOI: https://doi.org/10.1128/AEM.02403-07

Bruni, I.; Galimberti, A.; Caridi, L.; Scaccabarozzi, D.; de Mattia, F.; Casiraghi, M. and Labra, M., 2015. A DNA barcoding approach to identify plant species in multiflower honey. In: Food Chemistry, 170, pp. 308-315. DOI: https://doi.org/10.1016/j.foodchem.2014.08.060

Casiraghi, M.; Labra, M.; Ferrri, E.; Galimberti, A. and De Mattia, F., 2010. DNA barcoding: a six-question tour to improve user’s awareness about the method. In: Briefing in bioinformatics, 2(4), pp. 440-453. DOI: https://doi.org/10.1093/bib/bbq003

Chen, S.L.; Yao, H.; Han, J.P.; Chang, L.; Song, J.Y.; Shi, L.; Zhu, Y.; Ma, X.; Gao, T.; Pang, X.; Luo, K.; Li, Y.; Li, X.; Jia, X.C.; Lin, Y. and Leon, C., 2010. Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species. In: PLOS ONE, 5, e8613. DOI: https://doi.org/10.1371/journal.pone.0008613

Chiou, S.J.; Yen, J.H.; Fang, C.L.; Chen, H.L. and Lin, T.Y., 2007. Authentication of medicinal herbs using PCR-amplified ITS2 with specific primers. In: Planta Medica, 73 (13), pp.1421-1426. DOI: https://doi.org/10.1055/s-2007-990227

Cruz-Zamudio, A., 2017. Producción de miel convencional y orgánica en la Península de Yucatán. Sherbrooke: El Colegio de la Frontera Sur – Université de Sherbrooke. (Tesis de Maestría).

de Vere, N.; Rich, T.C.G.; Ford, C.R.; Trinder, S.A.; Long, C.; Moore, C.W.; Satterthwaite, D.; Davies, H.; Allainguillaume, J.; Ronca, S.; Tatarinova, T.; Garbett, H.; Walker, K. and Wilkinson, M.J., 2012. DNA Barcoding the Native Flowering Plants and Conifers of Wales. In: PLOS ONE, 7(6), e37945. DOI: https://doi.org/10.1371/journal.pone.0037945

Dereeper, A.; Audic, S.; Claverie, J.M. and Blanc, G., 2010. LAST-EXPLORER helps you building datasets for phylogenetic analysis. In: BMC Evolutionary Biology, 10(8). DOI: https://doi.org/10.1186/1471-2148-10-8

Duan, H.; Wang, W.; Zeng, Y.; Guo, M. and Zhou, Y., 2019. The Screening and identification of DNA barcodes sequences for Rehmannia. In: Scientific Reports, 9, 17295. DOI: https://doi.org/10.1038/s41598-019-53752-8

Durán-Escalante, K.; Ortiz-Díaz, J.J.; Pinzón-Esquivel, J.P.; Gálvez-Mariscal, M.A. and Alfaro-Bates, R.G., 2023. Palynological characterization of palm honey (Sabal yapa C. Wright ex Becc.) of Yucatan, Mexico. In: Grana 62(2), pp. 133-145. DOI: https://doi.org/10.1080/00173134.2023.2178264

Edgar, R.C., 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. In: Nucleic Acids Research, 32(5), pp. 1792-1797. DOI: https://doi.org/10.1093/nar/gkh340

Fazekas, A.J.; Burgess, K.S.; Kesanakurti, P.R.; Graham, S.W.; Newmaster, S.G.; Husband, B.C.; Percy, D.M.; Hajibabaei, M. and Barrett, S.C., 2008. Multiple multilocus DNA barcodes from the plastid genome discriminate plant species equally well. In: PLOS ONE, 3(7), e2802. DOI: https://doi.org/10.1371/journal.pone.0002802

Felsenstein, J., 1985. Confidence limits on phylogenies: An approach using the bootstrap. In: Evolution, 39(4), pp. 783-791. DOI: https://doi.org/10.1111/j.1558-5646.1985.tb00420.x

Ferreira de Lima, R.A.; de Oliveira, A.A.; Dalla-Colleta, G.; Bevilcqua-Flores, T.; Gayoso-Coelho, R.L., et al., 2018. Can plant DNA barcoding be implemented in species-rich tropical regions? A perspective from São Paulo State, Brazil. In: Genetics and Molecular Biology, 41(3), pp. 661-670. DOI: https://doi.org/10.1590/1678-4685-GMB-2017-0282

Galimberti, A.; De Mattia, F.; Bruni, I., Scaccabarozzi, A.; Sandionigi, A.; Barbuto, M.; Casiraghi, M. and Labra, M., 2014. A DNA barcoding approach to characterize pollen collected by honeybees. In: PLOS ONE, 9(10), e109363. DOI: https://doi.org/10.1371/journal.pone.0109363

Gao, T.; Yao, H.; Song, JY.; Zhu, YJ.; Liu, C. and Chen, SL., 2010. Evaluating the feasibility of using candidate DNA barcodes in discriminating species of the large Asteraceae family. In: BMC Evolutionary Biology, 10, 324. DOI: https://doi.org/10.1186/1471-2148-10-324

Genes Codes Corporation, 2002. Sequencher. Vers. 4.1.4. Ann Arbor: Genes Codes Corporation.

Gong, L.; Qiu X.H.; Huang, J.; Xu, W.; Bai, J.Q.; Zhang, J.; Su, H.; Xu, C.M. and Huang, Z.H., 2018. Constructing a DNA barcode reference library for the southern herbs in China: a resource for authentication of southern Chinese medicine. In: PLOS ONE, 13(7), e0201240. DOI: https://doi.org/10.1371/journal.pone.0201240

Hawkins, J.; de Vere, N.; Griffith, A.; Ford, C.R.; Allainguillaume, J.; Hegarty, M.J.; Baillie, L. and Adams-Groom, B., 2015. Using DNA metabarcoding to identify the floral composition of honey: a new tool for investigating honey bee foraging preferences. In: PLOS ONE, 10(8), e0134735. DOI: https://doi.org/10.1371/journal.pone.0134735

Hernández-Pineda, J.A., 2016. Códigos de barras biológicos en la identificación de plantas de importancia melífera. México: Universidad Nacional Autónoma de México. (Tesis de Maestría).

Hollingsworth, P.M.; Forrest, L.L.; Spouge, J.L.; Hajibabaei, M.; Ratnasingham, S.; van der Bank, M.; Chase, M.W.; Cowan, R.S.; Erickson, D.L.; Fazekas, A.J.; Graham, S.W.; James, K.E.; Kim, K.J.; Kress, W.J.; Schneider, H.; van AlphenStahl, J.; Barrett, S.C.H.; van den Berg, C.; Bogarin, D. …and Little, D.P., 2009. A DNA barcode for land plants. In: Proceedings of the National Academy of Sciences, 106(31), pp. 12794-12797. DOI: https://doi.org/10.1073/pnas.0905845106

Ignacimuthu, S., 2005. Basic bioinformatics. Harrow: Alpha Science International. ISBN: 1842652311.

Jones, L.; Twyford, A.D.; Ford, C.R.; Rich, T.C.G.; Davies, H.; Forrest, L.L.; Hart, M.L.; McHaffie, H.; Brown, M.R.; Hollingsworth, P.M. and Vere, N., 2021. Barcode UK: A complete DNA barcoding resource for the flowering plants and conifers of the United Kingdom. In: Molecular Ecology Resources, 21(6), pp. 2050-2062. DOI: https://doi.org/10.1111/1755-0998.13388

Kang, Y.; Deng, Z.; Zang, R. and Long, W., 2017. DNA barcoding analysis and phylogenetic relationships of tree species in tropical cloud forests. In: Scientific Reports, 7,12564. DOI: https://doi.org/10.1038/s41598-017-13057-0

Kress, W.J. and Erickson, D.L., 2007. A two-locus global DNA barcode for land plants: the coding rbcL gene complements the non-coding trnH-psbA spacer region. In: PLOS ONE, 2(6), e508. DOI: https://doi.org/10.1371/journal.pone.0000508

Laha, R.C.; de Mandal, S.; Ralte, L.; Ralte, L.; Kumar, N.S.; Gurusubramanian, G.; Satishkumar, R.; Mugasimangalam, R. and Kuravadi, N.A., 2017. Meta-barcoding in combination with palynological inference is a potent diagnostic marker for honey floral composition. In: AMB Express, 7,132. DOI: https://doi.org/10.1186/s13568-017-0429-7

Liu, M.; Li, X.W.; Liao, B.S.; Luo, L. and Ren, Y.Y., 2019. Species identification of poisonous medicinal plant using DNA barcoding. In: Chinese Journal of Natural Medicines, 17(8), pp. 0585-0590. DOI: https://doi.org/10.1016/S1875-5364(19)30060-3

Loera-Sánchez, M.; Studer, B. and Kölliker, R., 2020. DNA barcode trnH psbA is a promising candidate for efficient identification of forage legumes and grasses. In: BMC Research Notes, 13(35). DOI: https://doi.org/10.1186/s13104-020-4897-5

Manivanan, P.; Rajagopalan, S.M. and Subbarayalu, M.S., 2018. Studies on authentication of true source of honey using pollen DNA barcoding. In: Journal of Entomology and Zoology Studies, 6(3), pp. 255–261.

Martínez, M., 1997. Sistemática molecular: comparación entre diferentes métodos y sus aplicaciones. In: Boletín de la Sociedad Botánica de México, 60, pp. 123-136. DOI: https://doi.org/10.17129/botsci.1525

McGinnis, S. and Madden, T.L., 2004. BLAST: at the core of a powerful and diverse set of sequence analysis tools. In: Nucleic Acids Research, 32(Suppl. 2). DOI: https://doi.org/10.1093/nar/gkh435

Milla, L.; Schmidt-Lebuhn, A.; Bovill, J. and Encinas-Viso, F., 2022. Monitoring of honey bee floral resources with pollen DNA metabarcoding as a complementary tool to vegetation surveys. In: Ecological Solutions and Evidence, 3, e12120. DOI: https://doi.org/10.1002/2688-8319.12120

Murthy, M.; Khandayataray, P.; Ralte, L.; Laha, R. and Samal, D., 2019. Identification of plant species in multiflower honey by ribulose-bisphosphate carboxylase gene (rbcL) conding region as barcode marker, Mizoram, Northeast India: An Indo: Burma hotspot region. In: Journal of Entomology and Zoology Studies, 7(3), pp.1475-1483.

National Center for Biotechnology Information, NCBI, 2023. Basic Local Alignment Search Tool [Online]. Maryland: NCBI. [Accessed: June 22 of 2023]. Available at: https://blast.ncbi.nlm.nih.gov/Blast.cgi

Newell, P.D.; Fricker, A.D.; Roco, C.A.; Chandrangsu, P. and Merkel, S.M., 2013. A small-group activity introducing the use and interpretation of BLAST. In: Journal of Microbiology & Biology Education, 14(2), pp. 238-243. DOI: https://doi.org/10.1128/jmbe.v14i2.637

Newmaster, S.G.; Grguric, M.; Shanmughanandhan, D. Ramalingam, S. and Ragupathy, S., 2013. DNA barcoding detects contamination and substitution in North American herbal products. In: BMC Medicine, 11, 222. DOI: https://doi.org/10.1186/1741-7015-11-222

Pang, X.; Liu, C.; Shi, L.; Liu, R.; Liang, D.; Li, H.; Cherny, S.S. and Chen, S., 2012. Utility of the trnH–psbA intergenic spacer region and its combinations as plant DNA barcodes: a meta-analysis. In: PLOS ONE, 7(11), e48833. DOI: https://doi.org/10.1371/journal.pone.0048833

Parmentier, I.; Duminil, J.; Kuzmina, M.; Philippe, M.; Thomas, DW.; Kenfack, D.; Chuyong, G.B.; Cruaud, C. and Hardy, O.J., 2013. How effective are DNA barcodes in the identification of African rainforest trees? In: PLOS ONE, 8(4), e54921. DOI: https://doi.org/10.1371/journal.pone.0054921

Peña, C., 2011. Métodos de inferencia filogenética. In: Revista Peruana de Biología, 18(2), pp. 265-267. DOI: https://doi.org/10.15381/rpb.v18i2.243

Poczai, P. and Hyvönen, J., 2010. Nuclear ribosomal spacer regions in plant phylogenetics: problems and prospects. In: Molecular Biology Reports, 37(4), pp. 1897-1912. DOI: https://doi.org/10.1007/s11033-009-9630-3

Prosser, S.W.J. and Hebert, P.D.N., 2017. Rapid identification of the botanical and entomological sources of honey using DNA metabarcoding. In: Food Chemistry, 214, pp.183-191. DOI: https://doi.org/10.1016/j.foodchem.2016.07.077

Red de Herbarios del Noroeste de México, 2023. Colección Herbario Alfredo Barrera Marín (UADY-UADY) [Online]. México: Red de Herbarios del Noroeste de México. [Accesed: June 22 of 2023]. Available at: https://herbanwmex.net/portal/index.php

Rey Bentos, F. and Capdevielle Sosa, F.M., 2020. Aplicación del código de barras de ADN (DNA barcoding) para la identificación de especies vegetales de interés industrial. In: INNOTEC, 20, pp.117-138. DOI: https://doi.org/10.26461/20.06

Saitou, N. and Nei, M., 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. In: Molecular Biology and Evolution, 4(4), pp. 406-425. DOI: https://doi.org/10.1093/oxfordjournals.molbev.a040454

Sang, T.; Crawford, D.J. and Stuessy, T.F., 1997. Chloroplast DNA phylogeny, reticulate evolution, and biogeography of Paeonia (Paeoniaceae). In: American Journal of Botany, 84, 84(8), pp.1120-1136. DOI: https://doi.org/10.2307/2446155

Saravanan, M.; Mohanapriya, G.; Laha, R. and Sathishkumar, R., 2019. DNA barcoding detects floral origin of Indian honey samples. In: Genome, 62(5), pp. 341-348. DOI: https://doi.org/10.1139/gen-2018-0058

Servicio de Información Agroalimentaria y Pesquera., 2023. Producción estatal de miel durante el año 2020 en México [Online]. Servicio de Información Agroalimentaria y Pesquera. [Accessed: June 12 of 2023] Available at: http://infosiap.siap.gob.mx/repoAvance_siap_gb/pecAvanceProd.jsp

Soares, S.; Amaral, J.S.; Oliveira, M.B.P.P. and Mafra, I., 2017. A Comprehensive review on the main honey authentication issues: production and origin. In: Comprehensive Reviews in Food Science and Food Safety, 16(5), pp. 1072-1100. DOI: https://doi.org/https://doi.org/10.1111/1541-4337.12278

Taberlet, P.; Coissac, E.; Pompanon, F.; Gielly, L. Miquel, C.; Valentini, A.; Vermat, T.; Corthier, G.; Brochmann, C. and Willerslev, E., 2007. Power and limitations of the chloroplast trnL (UAA) intron for plant DNA barcoding. In: Nucleic Acids Research, 35(3), e14. DOI: https://doi.org/10.1093/nar/gkl938

Taberlet, P.; Coissac, E.; Pompanon, F.; Brochmann, C. and Willerslev, E., 2012. Towards next-generation biodiversity assessment using DNA metabarcoding. In: Molecular Ecology, 21(8), pp. 2045-2050.DOI: https://doi.org/https://doi.org/10.1111/j.1365-294X.2012.05470.x

Tamura, K.; Nei, M. and Kumar, S., 2004. Prospects for inferring very large phylogenies by using the neighbor-joining method. In: Proceedings of the National Academy of Sciences, 101(30), pp. 11030-11035. DOI: https://doi.org/10.1073/pnas.0404206101

Tamura, K.; Stecher, G. and Kumar, S., 2021. MEGA11: Molecular Evolutionary Genetics Analysis version 11. In: Molecular Biology and Evolution, 38(7), pp.3022-3027. DOI: https://doi.org/10.1093/molbev/msab120

Tate, J.A. and Simpson, B.B., 2003. Paraphyly of Tarasa (Malvaceae) and diverse origins of the polyploid species. In: Systematic Botany, 28(4), pp. 723-737. DOI: https://doi.org/10.1043/02-64.1

Villanueva-Gutiérrez, R.; Moguel-Ordóñez, Y.; Echazarreta-González, C.M. and Arana-López, G., 2009. Monofloral honeys in the Yucatán Peninsula, Mexico. In: Grana, 48(3), pp. 214-223. DOI: https://doi.org/10.1080/00173130902929203

Descargas

Publicado

2023-09-13

Cómo citar

Durán Escalante, K. C., Ortiz Díaz, J. J., Pinzón Esquivel, J. P. ., & Gálvez Mariscal, M. A. (2023). Utilidad de los códigos de barras de DNA en la identificación de plantas melíferas asociadas a la miel monofloral de Sabal yapa producida en el este de Yucatán, México. INNOTEC, (26 jul-dic), e637. https://doi.org/10.26461/26.01

Número

Sección

Artículos