Caracterización de las antocianinas de la flor de ceibo como sensibilizadores naturales para su uso en celdas fotovoltaicas

Autores/as

  • María Paula Enciso Laboratorio de Biomateriales, Facultad de Ciencias, UdelaR. Uruguay
  • María Fernanda Cerdá Bresciano Laboratorio de Biomateriales, Facultad de Ciencias, UdelaR. Uruguay

DOI:

https://doi.org/10.26461/09.12

Palabras clave:

Antocianinas, sensibilizadores, DSSC.

Resumen

La energía solar es la fuente de energía más promisoria del futuro, ya que la conversión directa de luz solar en energía eléctrica mediante el uso de celdas solares posee muchas ventajas sobre los métodos usados en la actualidad, debido a que no genera desechos o contaminantes.
En particular, las celdas solares sensibilizadas con pigmentos (DSSC) o celdas de Graetzel representan una alternativa a las convencionales celdas solares de silicio. En las últimas tres décadas han atraído considerable atención como una forma de producir celdas fotovoltaicas de bajo costo debido a la posibilidad de alcanzar una alta eficiencia de conversión (de aprox. 12%) y su alto rendimiento durante períodos de luz prolongados e incluso en condiciones de stress térmico.
En este trabajo se evalúan pigmentos de origen natural, la mezcla de antocianinas provenientes de la flor del ceibo, como sensibilizadores de estas celdas. Se utilizan medidas de absorbancia UV-visible, voltamperometría cíclica y espectroscopía de impedancia electroquímica como forma de caracterización.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Abal, G., D'Angelo, M., Cataldo, J., y Gutierrez, A., 2011. Mapa solar del Uruguay. Versión 1.0. Memoria técnica [En línea]. Montevideo: Universidad de la República.[Consulta: abril de 2014] Disponible en: http://www.fing.edu.uy/if/solar/memoria-mapa-solar-v1.pdf

Akond, A. S., Khandaker, L., Berthold, J. y Gates, L., 2011. Anthocyanin, total polyphenols and antioxidant activity of common bean. En: American Journal of Food Technology, 6(5), pp. 385-394.

Al-Bat’hi, S. A., Alaei, I. y Sopyan, I., 2013. Natural photosensitizers for dye sensitized solar cells. En: International Journal of Renewable Energy Research, 3(1), pp. 138-143.

Bisquert, J., Cahen, D., Hodes, G., Rühle, S, Zaban, A., 2004. Physical chemical principles of photovoltaic conversion with nanoparticulate, Mesoporous Dye-Sensitized solar cells. En: The Journal of Physical Chemistry B, 1088(24), pp. 8106.

Brumbach, M. T., Boal, A. K. y Wheeler, D. R., 2009. Metalloporphyrin assemblies on pyridine-functionalized titanium dioxide. En: Langmuir, 25(18), pp. 10685-90.

Calogero, G. y Di Marco, G., 2008. Red sicilian orange and purple eggplant fruits as natural sensitizers for dye-sensitized solar cells. En: Solar Energy Materials & Solar Cells, 92(11), pp. 1341- 1346.

Calogero, G., Yum, H. J., Sinopoli, A., Di Marco, G., Grätzel, M. y Nazeeruddin, M. K., 2012. Anthocyanins and betalains as light-harvesting pigments for dye-sensitized solar cells. En: Solar Energy, 86(5), pp. 1563-1575.

Cao, Y. M., Bai, Y., Yu, Q. J., Cheng, Y. M., Liu, S., Shi, D., Gao F. y Wang P, 2009. Dye-sensitized solar cells with a high absorptivity ruthenium sensitizer featuring a 2-(Hexylthio)thiophene conjugated bipyridine. En: Journal of Physical Chemistry C, 113(15), pp. 6290–6297.

Chen, C. Y., Wang, M. K., Li, J. L., Pootrakulchote, N., Alibabaei, L., Ngoc-le, C. H., Decoppet, J. D, Tsai, J. H., Grätzel, C., Wu, C. G., Zakeeruddin, S. M., y Grätzel, M., 2009. Highly efficient light-harvesting ruthenium sensitizer for thin-film dye-sensitized solar cells. En: ACS Nano, 3(10), pp. 3103–3109.

Dwivedi, C., Dutta, V., Chandiran, A. K., Nazeeruddin, M. K. y Grätzel, M., 2013. Anatase TiO2 hollow microspheres fabricated by continuous spray pyrolysis as a scattering layer in dye-sensitised solar cells. En: Energy Procedia, 33, pp. 223-227.

Enciso, P., Cabrerizo, F. M., Gancheff, J. S., Denis, P. A. y Cerdá, M. F., 2013. Phycocyanin as potential natural dye for its use in photovoltaic cells. En: The Journal of Solution Chemistry and Modeling, 2(1), pp. 225-233.

Fabregat-Santiago, F., Bisquert, J., Garcia-Belmonte, G., Boschloo, G. y Hagfeldt, A., 2005. Influence of electrolyte in transport and recombination in dye-sensitized solar cells studied by impedance spectroscopy. En: Solar Energy Materials & Solar Cells, 87(4), pp. 117-131.

Fukuri, N., Masaki, N., Kitamura, T., Wada Y. y Yanagida, S., 2006. Electron transport analysis for improvement of solid-state dye-sensitized solar cells using poly(3,4-ethylenedioxythiophene) as hole conductors. En: J. Phys. Chem. B, vol. 110(50), pp. 25251-8.

Gao, F., Wang, Y., Shi, D., Zhang, J., Wang, M. K., Jing, X. Y., Humphry-Baker R., Wang, P., Zakeeruddin, S. M. y Grätzel, M., 2008. Enhance the optical absorptivity of nanocrystalline TiO2 film with high molar extinction coefficient ruthenium sensitizers for high performance dye-sensitized solar cells. En: Journal of American Chemical Society, 130(32), pp. 10720–10728.

Grätzel, C. y Zakeeruddin, S. M., 2013. Recent trends in mesoscopic solar cells based on molecular and nanopigment light harvesters. En: Materials Today, 16(2), pp. 11-18.

Gross, J.,1987. Pigments in fruits. Liverpool: Academic press.ISBN: 0123042003.

Hao, S., Wu, J., Huang, Y. y Lin, J., 2006. Natural dyes as photosensitizers for dye-sensitized solar cell. En: Solar Energy, 80(2), pp. 209–214.

Howie, W. H., Claeyssens, F., Miura H. y Peter, L. M., 2008. Characterization of solid-state dye-sensitized solar cells utilizing high absorption coefficient metal-free organic dyes. En: Journal of the American Chemical Society, 130 (4), pp. 1367-1375.

Imahori, H., Hayashi, S., Umeyama, T., Eu, S., Oguro, A., Kang, S., Matano, Y., Shishido, T., Ngamsinlapasathian, S., y Yoshikawa, S., 2006. Comparison of electrode structures and photovoltaic properties of porphyrin-sensitized solar cells with TiO2 and Nb, Ge, Zr-Added TiO2 composite electrodes. En: Langmuir, 22(26), pp. 11405-11411.

Ito, S., Chen, P., Comte, P., Nazeeruddin, M. K., Liska, P., Pechy P., y Gratzel, M., 2007. Fabrication of screen-printing pastes from TiO2 powders for dye-sensitised solar cells. En: Progress in Photovoltaics: Research and Applications, 15(7), pp. 603-612.

Ito, S., Dharmadasa, I. M., Tolan, G. L., Roberts, S. J., Hill, G., Miura, H., Yum, J. H., Pechy, P., Liska, P., Comte, P. y and Grätzel, M., 2011. High-voltage (1.8 V) tandem solar cell system using a GaAs/AlXGa(1−X) As graded solar cell and dye-sensitised solar cells with organic dyes having different absorption spectra. En: Solar Energy, 85(6), pp. 1220-1225.

Klahr, B. M. y Hamann, T. W., 2009. Performance enhancement and limitations of cobalt bipyridyl redox shuttles in dye-sensitized solar cells. En: The Journal of Physical Chemistry C, 113(31), pp. 14040-14045.

Kremer, C., Cerdá, M. F., Torres, J., Heinzen, H., Bertucci, A., y Domínguez, S., 2008. Electrochemical behavior of flavonoids in the presence of metal ions. En: Hughes, J. G., Robinson, A. J. Inorganic biochemistry: research progress. New York: Nova Science Publishers. pp. 161-184.

Li, Y., Ku, S. H., Chen, S. M., Ajmal Ali, M. y AlHemaidFahad M. A., 2013. Photoelectrochemistry for red cabbage extract as natural dye to develop a dye-sensitized solar cells. En: International Journal of Electrochemical Science, 8(1), pp. 1237-1245.

Mazza, G. y Miniati, E., 1993. Anthocyanins in fruits, vegetables and grains. En: Molecular Nutrition, 38(3), p. 343.

Miño, J. y Ferraro, G., 2002. Actividad antinociceptiva y antiinflamatoria de Erythrina crista-galli L. (“Ceibo”). En: Acta Farm. Bonaerense, 21(2), pp. 93-98.

Mitscher, L., Gollapudi, D., Gerlach, D. y Ward, J. 1988. Erycristin, a new antimicrobial petrocarpa from Erythrina crista galli. En: Photochemistry, 27(2), pp. 381-385.

O`Reagan, B. C., Durrant, J.R. y Bakker, N. J., 2007. Influence of the TiCl4 treatment on nanocrystalline TiO2 films in dye-sensitized solar cells. 2. charge density, band edge shifts, and quantification of recombination losses at short circuit. En: The Journal of Physical Chemistry C, 111(37), pp. 14001-14010.

Rabino, I. y Mancinelli, A. L., 1986. Light, temperature and anthocyanin production. En: Plant Physiology, 81, pp. 922-924.

Rustoni, L., Bedgood, D. R., Failla, O., Prenzeld, P. D. y Robards, K., 2012.

Copigmentation and anti-copigmentation in grape extracts studied by spectrophotometry and post-column-reaction HPLC. En: Food Chemistry, 132(4), pp. 2194-2201.

Scogin, R., 1991. Anthocyanins of the Genus Erythrina (Fabaceae). En: Biochemical Systematics and Ecology, 19, pp. 329-332.

Scott, M. J., Nelson, J.J., Caramori, S., Bignozzi, C. A. y Elliot, C. M., 2007. Cis-Dichloro-bis (4,4'-dicarboxy-2,2-bipyridine) osmium(II)- modified optically transparent electrodes: application as cathodes in stacked dye-sensitized solar cells. En: Inorganic Chemistry, 46(24), pp. 10071-10078.

Smestad, G. P., 1998. Education and solar conversion: demonstrating electron transfer. En: Solar Energy Materials and Solar Cells, 55(1), pp. 157-178.

Uruguay. Ley 17283, de 28 de noviembre de 2000. Diario Oficial, 12 de diciembre de 2000, p. 932.

Uruguay. Decreto 173/010, de 1 de junio de 2010. Diario Oficial, 8 de junio de 2010, p.1103.

Wang, P., Yu, Q. J., Wang, Y. H., Yi, Z. H., Zu, N. N., Zhang, J. y Zhang, M., 2010. High-efficiency dye-sensitized solar cells: The influence of lithium ions on exciton

dissociation, charge recombination, and surface states. En: ACS Nano, 4(10), pp. 6032–6038.

Yella, A., Lee, H-L., Tsao, H. N., Yi, C., Chandiran, A. K., Nazeeruddin, S. M., Diau, W., Yeh, C., S. M. Zakeeruddin, S. M. y Grätzel, M., 2011. Porphyrin-sensitized solar cells with cobalt (II/III)–based redox electrolyte exceed 12 percent efficiency. En: Science, 334 (6056), pp. 629-634.

Yoshitama, K., 1987. An acylated delphinidin-3-rutinoside-5,3´,5´-triglucoside from Lobelia erinus. En: Phytochemistry, 16(11), pp. 1857-1858.

Yum, J. H., Moon, S. J., Karthikeyan, C., Wietasch, S. H., Thelakkat, M., Zakeeruddin S. M., Nazeeruddin, M. K. y Grätzel, M., 2012. Heteroleptic ruthenium complex containing substituted triphenylamine hole-transport unit as sensitizer for stable dye-sensitized solar cell. En: Nano Energy, 1(1), pp. 6-12.

Zhou, H., Wu, L., Gao, Y. y Ma, T., 2011. Dye-sensitized solar cells using 20 natural dyes as sensitizers. En: Journal of Photochemistry and Photobiology A: Chemistry, 219(3), pp. 188–194.

Descargas

Publicado

2014-10-13

Cómo citar

Enciso, M. P., & Cerdá Bresciano, M. F. (2014). Caracterización de las antocianinas de la flor de ceibo como sensibilizadores naturales para su uso en celdas fotovoltaicas. INNOTEC, (9 ene-dic), 91–96. https://doi.org/10.26461/09.12

Número

Sección

Artículos

Artículos más leídos del mismo autor/a