Simulación de la convección natural en un horno eléctrico
DOI:
https://doi.org/10.26461/11.04Palabras clave:
Consumo energético, Hornos eléctricos, Fluido-dinámica.Resumen
Los productos cárnicos y panificados son de consumo masivo en numerosos países y suponen un consumo de energía elevado y, cada vez en mayor medida, el uso hornos eléctricos. En este sentido, es importante desarrollar hornos eficientes.El objetivo de este trabajo fue desarrollar un modelo preliminar de la fluido-dinámica por convección natural dentro de un horno eléctrico. Se utilizó un horno doméstico para los experimentos y dada la simetría del horno en las simulaciones numéricas se trabajó con un cuarto del volumen real. Para calcular el flujo de aire en el interior del horno se adoptó un modelo 3D de flujo laminar incompresible, acoplando el balance de energía, y la aproximación de Boussinesq para describir las fuerzas de flotación. En el balance de energía se impuso la temperatura en el techo y el piso, y en la pared y la puerta se estableció pérdida de energía por convección. El modelo se validó aceptablemente con determinaciones experimentales de perfiles de temperatura en diferentes posiciones del horno. Las variaciones de temperaturas observadas experimentalmente sugieren que el modelo laminar y la aproximación de Boussinesq están al límite de sus posibilidades, por lo cual se prevé en futuros trabajos usar modelos de turbulencia.
Descargas
Citas
Boulet, M., Marcos, B., Dostie, M. y Moresoli, C., 2010. CFD modeling of heat transfer and flow field in a bakery pilot oven. En: Journal of Food Engineering, 97(3), pp.393-402.
Chhanwal, N., Anishaparvin, A., Indrani, D., Raghavarao, K.S.M.S. y Anandharamakrishnan, C., 2010. Computational fluid dynamics (CFD) modeling of an electrical heating oven for bread-baking process. En: Journal of Food Engineering, 100(3), pp.452-460.
Chhanwal, A., Indrani, D., Raghavarao, K.S.M.S. y Anandharamakrishnan, C., 2011. Computational fluid dynamics modeling of bread baking process. En: Food Research International,44(4), pp.978-983.
Ferziger, J. H. y Perić, M., 2002. Computational methods for fluid dynamics. Berlin: Springer-Verlag.
Goñi, S. M. y Salvadori, V. O., 2012. Model-based multi-objective optimization of beef roasting. En: Journal of Food Engineering, 111(1), pp.92-101.
Goñi, S.M. y Salvadori, V.O., 2014. Energy consumption estimation during oven cooking of food. En: Reiter, S., ed. Energy consumption: impacts of human activity, current and future challenges, environmental and socio-economic effects. New York: Nova Science Publishers. pp.99-116.
Khatir, Z., Paton, J., Thompson H., Kapur, N. y Toropov, V. 2013. Optimisation of the energy efficiency of bread-baking ovens using a combined experimental and computational approach. En: Applied Energy, 112, pp.918-927.
Marra, F., De Bonis, M.V. y Ruocco, G., 2010. Combined microwaves and convection heating: a conjugate approach. En: Journal of Food Engineering, 97(1), pp.31-39.
Mistry, H., Ganapathi-subbu, Dey, S., Bishnoi, P., Castillo, J.L., 2006. Modeling of transient natural convection heat transfer in electric ovens. En: Applied Thermal Engineering, 26(17-18), pp.2448-2456.
Mistry, H., Ganapathisubbu, S., Dey, S., Bishnoi, P. y Castillo, J.L., 2011. A methodology to model flow-thermals inside a domestic gas oven. En: Applied Thermal Engineering, 31(1), pp.103-111.
Norton, T. y Sun, D.-W. 2006. Computational fluid dynamics (CFD) - an effective and efficient design and analysis tool for the food industry: A review. En: Trends in Food Science & Technology, 17(20), pp. 600-620.
Paton, J., Khatir, Z., Thompson H., Kapur, N. y Toropov, V., 2013. Thermal energy management in the bread baking industry using a system modelling approach. En: Applied Thermal Engineering, 53(2), pp.340-347.
Smolka, J., Nowak, A.J. y Rybarz, D., 2010. Improved 3-D temperature uniformity in a laboratory drying oven based on experimentally validated CFD computations. En: Journal of Food Engineering, 97(3), pp.373-383.
Smolka, J. 2013. Genetic algorithm shape optimisation of a natural air circulation heating oven based on an experimentally validated 3-D CFD model. En: International Journal of Thermal Sciences, 71, pp.128-139.
Tzempelikos, D.A., Mitrakos, D., Vouros, A.P., Bardakas A.V., Filios, A.E. y Margaris, D.P., 2015. Numerical modeling of heat and mass transfer during convective drying of cylindrical quince slices. En: Journal of Food Engineering, 156, pp.10-21.
Verboven, P., Scheerlinck, N., De Baerdemaeker, J. y Nicolaï, B.M., 2000. Computational fluid dynamics modelling and validation of the temperature distribution in a forced convection oven. En: Journal of Food Engineering, 43(2), pp.61-73.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Los autores del manuscrito declaran conocer y aceptar los siguientes términos de responsabilidad:
Haber participado lo suficiente en el trabajo como para hacer pública la responsabilidad por su contenido.
Que el manuscrito representa un trabajo original que no fue publicado ni está siendo considerado por otra revista para su publicación, en parte o en forma íntegra, tanto impresa como electrónica.
Que en caso de ser solicitado, procurará o cooperará en la obtención y suministro de datos sobre los cuales el manuscrito esté basado.
Declara que la información divulgada que pudiera pertenecer a un tercero cuenta con la autorización correspondiente.
Autorización para la publicación y compromiso de cita de primera publicación
Los autores/as conservan los derechos de autor y ceden a la revista INNOTEC / INNOTEC Gestión el derecho de la primera publicación, con el trabajo registrado con la licencia de atribución Creative Commons Reconocimiento-NoComercial 4.0 Internacional. Creative Commons, que permite a terceros utilizar lo publicado siempre que mencionen la autoría del trabajo y a la primera publicación en esta revista sin fines comerciales.
El autor se compromete a realizar la cita completa de la edición institucional de esta primer publicación en las siguientes publicaciones -completas o parciales- efectuadas en cualquier otro medio de divulgación, impreso o electrónico.
Los autores/as pueden realizar otros acuerdos contractuales no comerciales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en esta revista (p. ej., incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en esta revista.
Se permite a los autores/as publicar su trabajo en Internet (por ejemplo en páginas institucionales o personales) antes y durante el proceso de revisión, ya que puede conducir a intercambios productivos y a una mayor y más rápida difusión del trabajo publicado (vea The Effect of Open Access). A su vez los autores/as autorizan al LATU a publicar el trabajo en su repositorio digital.
Los conceptos y opiniones vertidos en los artículos son de responsabilidad de sus autores.
Este obra está bajo una licencia Reconocimiento-NoComercial 4.0 Internacional.