Simulation of the natural convection in an electrical oven

Authors

  • Sandro Mauricio Goñi CIDCA. CONICET CCT-La Plata, Facultad de Ciencias Exactas, Universidad Nacional de La PlataFacultad de Ingeniería, Universidad Nacional de La Plata
  • Viviana Olga Salvadori CIDCA. CONICET CCT-La Plata, Facultad de Ciencias Exactas, Universidad Nacional de La PlataFacultad de Ingeniería, Universidad Nacional de La Plata

DOI:

https://doi.org/10.26461/11.04

Keywords:

Energy consumption, electric ovens, fluid-dynamics

Abstract

Meat and bakery products are widely consumed in many countries and this process presents a high energy consumption. At the same time the use of electric ovens is increasing. In this regard, the development of efficient ovens becomes more important.The aim of this work was to develop a preliminary model of the natural convection fluid-dynamics in an electric oven. A domestic oven was employed in the experiments, for simulation purposes a model of a quarter of its actual volume was employed. The air flow inside the oven was described using a laminar incompressible 3D model coupled to the energy balance, using the Boussinesq approximation to describe buoyancy forces. In the energy balance the temperature was imposed on the roof and the floor, whilst energy loss by convection was established at the side walls and the door. The model was reasonably validated with temperature profiles measured in different positions in the oven. The measured temperature variations indicate that the laminar model and the Boussinesq approximation are hardly applicable, then turbulence models will be used in future works.

Downloads

Download data is not yet available.

References

Ateeque, Md., Udayraj, Mishra, R. K., Chandramohan, V. P. y Talukdar, P., 2014. Numerical modeling of convective drying of food with spatially dependent transfer coefficient in a turbulent flow field. En: International Journal of Thermal Sciences, 78, pp.145-157.

Boulet, M., Marcos, B., Dostie, M. y Moresoli, C., 2010. CFD modeling of heat transfer and flow field in a bakery pilot oven. En: Journal of Food Engineering, 97(3), pp.393-402.

Chhanwal, N., Anishaparvin, A., Indrani, D., Raghavarao, K.S.M.S. y Anandharamakrishnan, C., 2010. Computational fluid dynamics (CFD) modeling of an electrical heating oven for bread-baking process. En: Journal of Food Engineering, 100(3), pp.452-460.

Chhanwal, A., Indrani, D., Raghavarao, K.S.M.S. y Anandharamakrishnan, C., 2011. Computational fluid dynamics modeling of bread baking process. En: Food Research International,44(4), pp.978-983.

Ferziger, J. H. y Perić, M., 2002. Computational methods for fluid dynamics. Berlin: Springer-Verlag.

Goñi, S. M. y Salvadori, V. O., 2012. Model-based multi-objective optimization of beef roasting. En: Journal of Food Engineering, 111(1), pp.92-101.

Goñi, S.M. y Salvadori, V.O., 2014. Energy consumption estimation during oven cooking of food. En: Reiter, S., ed. Energy consumption: impacts of human activity, current and future challenges, environmental and socio-economic effects. New York: Nova Science Publishers. pp.99-116.

Khatir, Z., Paton, J., Thompson H., Kapur, N. y Toropov, V. 2013. Optimisation of the energy efficiency of bread-baking ovens using a combined experimental and computational approach. En: Applied Energy, 112, pp.918-927.

Marra, F., De Bonis, M.V. y Ruocco, G., 2010. Combined microwaves and convection heating: a conjugate approach. En: Journal of Food Engineering, 97(1), pp.31-39.

Mistry, H., Ganapathi-subbu, Dey, S., Bishnoi, P., Castillo, J.L., 2006. Modeling of transient natural convection heat transfer in electric ovens. En: Applied Thermal Engineering, 26(17-18), pp.2448-2456.

Mistry, H., Ganapathisubbu, S., Dey, S., Bishnoi, P. y Castillo, J.L., 2011. A methodology to model flow-thermals inside a domestic gas oven. En: Applied Thermal Engineering, 31(1), pp.103-111.

Norton, T. y Sun, D.-W. 2006. Computational fluid dynamics (CFD) - an effective and efficient design and analysis tool for the food industry: A review. En: Trends in Food Science & Technology, 17(20), pp. 600-620.

Paton, J., Khatir, Z., Thompson H., Kapur, N. y Toropov, V., 2013. Thermal energy management in the bread baking industry using a system modelling approach. En: Applied Thermal Engineering, 53(2), pp.340-347.

Smolka, J., Nowak, A.J. y Rybarz, D., 2010. Improved 3-D temperature uniformity in a laboratory drying oven based on experimentally validated CFD computations. En: Journal of Food Engineering, 97(3), pp.373-383.

Smolka, J. 2013. Genetic algorithm shape optimisation of a natural air circulation heating oven based on an experimentally validated 3-D CFD model. En: International Journal of Thermal Sciences, 71, pp.128-139.

Tzempelikos, D.A., Mitrakos, D., Vouros, A.P., Bardakas A.V., Filios, A.E. y Margaris, D.P., 2015. Numerical modeling of heat and mass transfer during convective drying of cylindrical quince slices. En: Journal of Food Engineering, 156, pp.10-21.

Verboven, P., Scheerlinck, N., De Baerdemaeker, J. y Nicolaï, B.M., 2000. Computational fluid dynamics modelling and validation of the temperature distribution in a forced convection oven. En: Journal of Food Engineering, 43(2), pp.61-73.

Published

2016-07-07

How to Cite

Goñi, S. M., & Salvadori, V. O. (2016). Simulation of the natural convection in an electrical oven. INNOTEC, 1(11 ene-jul), 36–41. https://doi.org/10.26461/11.04

Issue

Section

Articles