Estudio de la inactivación de microorganismos deteriorativos en jugos de manzana y melón tratados por luz pulsada y ultrasonido
DOI:
https://doi.org/10.26461/11.01Palabras clave:
Tecnologías emergentes, tratamientos combinados, jugos frutalesResumen
En este estudio se investigó el efecto de la luz pulsada (0-71,6 J/cm2, T< 20 °C) en sistema estanco (LPe) en la inactivación de esporas de Alicyclobacillus acidoterrestris ATCC 49025, células de Saccharomyces cerevisiae KE 162 yEscherichia coliATCC 35218 en jugos naturales de manzana (Pyrus malus L, var. Granny Smith, pH: 3,4; 11,4 ºBrix) y melón (Cucumis melo, var. rocío de miel; pH: 5,7 ± 0,2; 8,4 ± 2,5 °Brix). Por otra parte, se estudió el efecto de LP en flujo continuo (LPc, 0-0,73 J/cm2,0-0,0175 J/ml, 155 ml/min, T: 25 °C) Scombinado o no con ultrasonido (US, 20 kHz, 80%, 30 min, T: 25 °C) en la inactivación de E. coli en jugo de manzana. El tratamiento LPesimple provocó hasta 1,9-6,2 y 1,0-2,1 reducciones logarítmicas de A. acidoterrestris, S. cerevisiae yE. colien jugos de melón y manzana, respectivamente. Los tratamientos de LPcy US provocaron una reducción de 3,1 y 2,7 ciclos logarítmicos de E. colien jugo de manzana, respectivamente. La combinación US+LPcresultó aditiva dado que se logró una reducción de 5,7 ciclos logarítmicos. Los modelos bifásico y de Weibull brindaron mejor ajuste y estimación de los parámetros que el modelo de Coroller. El jugo de manzana resultó altamente aceptado por un grupo de consumidores que resaltaron su sabor a manzana natural.
Descargas
Citas
Akaike, H., 1973. Proceedings of the 2nd International Symposium of Information. En: B.N. Petrov, y F. Cza’ki (Eds.). En: Information theory and extension of the maximum likelihood principle. Akademiai Kiado: Budapest,pp.267–281.
Alzamora, S.M., Guerrero, S., Viollaz, P., y Welti, J., 2005. Novel food processing. En: Barbosa-Cánovas G. (Ed.). Experimental protocols for modeling the response of microbial populations exposed to emerging technologies: Some points of concern. Nueva York, Marcel Dekker, Inc., pp.591-607.
Alzamora, S.M., Guerrero, S., Schenk, S., Raffellini, S. y López-Malo, A., 2011. Inactivation of microorganisms. En: Feng H., Barbosa-Canovas G., Weiss J., (Eds.). Ultrasound Technologies for Food and Bioprocessing. Nueva York, Springer, pp.321-343.
Bahçeci, K., Gökmen, V., Acar, J., 2005. Formation of guaiacol from vanillin by Alicyclobacillus acidoterrestris in apple juice: a model study. En: European Food Research and Te c h n o l o g y, 220, pp.196-199.
Cerf, O., 1977. Tailing of survival curves of bacterial spores. En: Journal of Applied Microbiology, 42, pp.1-19.
Coroller, L., Leguerinel, I., Mettler, E., Savy, N., y Mafart, P., 2006. General model, based on a two mixed Weibull distributions of bacterial resistance, for describing various shapes of inactivation curves. En: Applied and Environmental Microbiology, 72, pp.6493-6502.
Everitt, B.S., Landau, S., y Leese, M., 2001. Cluster analysis. , Oxford, John Wiley & Sons.
Ferrante, S., Guerrero, S., y Alzamora, S.M., 2007. Combined use of ultrasound and natural antimicrobials to inactivate L. monocytogenes in orange juice. En: Journal of Food Protection, 70, pp.1850-1857.
Ferrario, M., Guerrero, S., y Alzamora, S.M. (2013a). Study of pulsed light-induced damage on Saccharomyces cerevisiae in apple juice by flow cytometry and transmission electron microscopy. En: Food and Bioprocess Technology, 7, pp.1001-1011.
Ferrario, M., Alzamora, S.M., y Guerrero, S., 2013b. Inactivation kinetics of some microorganisms in apple, melon, orange and strawberry juices by high intensity light pulses. En: Journal of Food Engineering, 118, pp.302-311.
Gómez, P., Salvatori, D., García Loredo, A., Alzamora, S.M., 2012. Pulsed light treatment of cut apple: dose effect on color, structure and microbiological stability, En: Food and Bioprocess Technology, 5, pp.2311-2322.
Gómez-López, V., Ragaert, P., Debevere, J., y Devlieghere, F., 2007. Pulsed light for food decontamination: a review. En: Trends in Food Science and Technology, 18, pp.464-473.
Guerrero, S., López-Malo, A., Alzamora, S.M., 2001. Effect of ultrasound on the survival of Saccharomyces cerevisiae: influence of temperature, pH and amplitude. En: Innovative Food Science and Emerging Technologies, 2, pp.31-39.
Guerrero, S., Tognon, M., Alzamora, S.M., 2005. Response of Saccharomyces cerevisiae to the combined action of ultrasound and low weight chitosan. En: Food Control, 16, pp.131-139.
Hierro, E., Barroso, E., De la Hoz, L., Ordóñez, J. Manzano, S. y Fernández, M., 2011. Efficacy of pulsed light for shelf-life extension and inactivation of Listeria monocytogenes on ready-to-eat cooked meat products. En: Innovative Food Science and Emerging Technologies, 3, pp.275-281.
Izquier, A., y Gómez-López, V., 2011. Modeling the pulsed light inactivation of microorganisms naturally occurring on vegetable substrates. En: Food Microbiology, 28, pp.1170-1174.
Jun, S., Irudayaraj, J., Demirci, A., y Geiser, D., 2003. Pulsed UV light treatment of corn meal for inactivation of Aspergillus niger spores. En: International Journal of Food Science and Technology, 38, pp.883–888.
Knorr, D., Zenker, M., Heinz, V., Lee, D., 2004. Applications and potential of ultrasonics in food processing. En: Trends in Food Science and Technology, 15, pp.261–266.
Krishnamurthy, K., Tewari, J., Irudayaraj, J., y Demirci, A., 2010. Microscopic and spectroscopic evaluation of inactivation of Staphylococcus aureus by pulsed light and infrared heating. En: Food and Bioprocess Technology, 3, pp.93-104.
Krishnamurthy, K., Demirci, A. y Irudayaraj, J., 2008. Inactivation of Staphylococcus aureus in milk using flow-through pulsed UV-light treatment system. En: Food Microbiology and Safety, 72, pp.233–239.
Lasagabaster, A. y Martínez, I., 2014. Survival and growth of Listeria innocua treated by pulsed light technology: impact of posttreatment temperature and illumination. En: Food Microbiology, 41, pp.76-81.
Lawless, H., 2013. Segmentation. En: H. Lawless, (Ed.), Quantitative sensory analysis. Psychophysics, models and intelligent design. Oxford, Wiley Blackwell, pp.323-338.
Martínez, A., Díaz, R.V., y Tapia, M.S., 2000. Microbial ecology of spoilage and pathogenic flora associated to fruits and vegetables, En: Alzamora, S.M., Tapia, M., López-Malo, A. (Eds.), Minimally processed fruits and vegetables. Fundamental aspects and applications. Gaithersburg, Aspen publishers Inc., pp.43-62.
Muñoz, A., Palgan, I., Noci, F., Morgan, D., Cronin, D., Whyte, P. y Lyng, J., 2011. Combinations of high intensity light pulses and thermosonication for the inactivation of Escherichia coli in orange juice.En: Food Microbiology, 28, pp.1200-1204.
Muñoz, A., Palgan, I., Noci, F., Cronin, D.A., Morgan, D.J., Whyte, P. y Lyng, J., 2012a. Combinations of selected non-thermal technologies and antimicrobials for microbial inactivation in a buffer system. En: Food Research International, 47, pp.100–105.
Muñoz, A., Caminiti, I., Palgan, I., Pataro, G., Noci, F., Morgan, D., Cronin, D., Whyte, P., Ferrari, G. y Lyng, J., 2012b. Effects on Escherichia coli inactivation and quality attributes in apple juice treated by combinations of pulsed light and thermosonication. En: Food Research International, 45, pp.299–305.
Pataro, G., Muñoz, A., Palgan, I., Noci, F., Ferrari, G. y Lyng, J.G., 2011. Bacterial inactivation in fruit juices using a continuous flow pulsed light (PL) system. En: Food Research International, 44, pp.1642–1648.
Peleg, M. y Cole, M. B., 1998. Reinterpretation of microbial survival curves. En: Critical Reviews in Food Science, 38, pp.353-380.
Piyasena, P., Mohareb, E. y McKellar, R., 2003. Inactivation of microbes using ultrasound. A review. En: International Journal of Food Microbiology, 87, pp.207-216.
Quinn, G. y Keough, M., 2002. Generalized linear models and logistic Regression.En:Quinn G. y Keough M., M. Experimental design and data analysis for biologists. Cambridge, Cambridge University Press, pp.359-380.
Sauer, A. y Moraru, C., 2009. Inactivation of Escherichia coli ATCC 25922 and Escherichia coli O157:H7 in apple juice and apple cider using pulsed light treatment. En: Journal of Food Protection, 72, pp.937-944.
Silva, F., Gibbs, P., 2001. Alyciclobacillus acidoterrestris spores in fruit products and design of pasteurization processes. En: Trends in Food Science and Technolog y, 12, pp.68-74.
Smit, Y., Cameron, M., Venter, P., Witthuhn, R., 2010. Alyciclobacillus spoilage and isolation- A review. En: Food Microbiology, 28, pp.331-349.
Stratford, M., Hofman, P., Cole, M., 2000. Fruit juices, fruit drinks, and soft drinks, En: Lund, B.M., Baired Parker, T.C., Gould, G.W. (Eds.). Microbiological safety and quality of food. Gaithersburg, Aspen Publishers Inc., pp.836-850.
Vercammen, A., Vivijs, B., Lurquin, I., Michiels, C., 2012. Germination and inactivation of Bacillus coagulansand Alicyclobacillus acidoterrestris spores by high hydrostatic pressure treatment in buffer and tomato sauce. En: International Journal of Food Microbiology, 152, pp.162-167.
Wekhof, A., 2000. Desinfection with flash lamps. En: PDA Journal of Pharmaceutical Science and Technology, 54, pp.264-275.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Los autores del manuscrito declaran conocer y aceptar los siguientes términos de responsabilidad:
Haber participado lo suficiente en el trabajo como para hacer pública la responsabilidad por su contenido.
Que el manuscrito representa un trabajo original que no fue publicado ni está siendo considerado por otra revista para su publicación, en parte o en forma íntegra, tanto impresa como electrónica.
Que en caso de ser solicitado, procurará o cooperará en la obtención y suministro de datos sobre los cuales el manuscrito esté basado.
Declara que la información divulgada que pudiera pertenecer a un tercero cuenta con la autorización correspondiente.
Autorización para la publicación y compromiso de cita de primera publicación
Los autores/as conservan los derechos de autor y ceden a la revista INNOTEC / INNOTEC Gestión el derecho de la primera publicación, con el trabajo registrado con la licencia de atribución Creative Commons Reconocimiento-NoComercial 4.0 Internacional. Creative Commons, que permite a terceros utilizar lo publicado siempre que mencionen la autoría del trabajo y a la primera publicación en esta revista sin fines comerciales.
El autor se compromete a realizar la cita completa de la edición institucional de esta primer publicación en las siguientes publicaciones -completas o parciales- efectuadas en cualquier otro medio de divulgación, impreso o electrónico.
Los autores/as pueden realizar otros acuerdos contractuales no comerciales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en esta revista (p. ej., incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en esta revista.
Se permite a los autores/as publicar su trabajo en Internet (por ejemplo en páginas institucionales o personales) antes y durante el proceso de revisión, ya que puede conducir a intercambios productivos y a una mayor y más rápida difusión del trabajo publicado (vea The Effect of Open Access). A su vez los autores/as autorizan al LATU a publicar el trabajo en su repositorio digital.
Los conceptos y opiniones vertidos en los artículos son de responsabilidad de sus autores.
Este obra está bajo una licencia Reconocimiento-NoComercial 4.0 Internacional.