Study of the inactivation of spoilage microorganisms in apple and melon juices by pulsed light and ultrasound

Authors

  • Mariana Ferrario Universidad de Buenos Aires
  • Sandra Guerrero Universidad de Buenos Aires. Argentina

DOI:

https://doi.org/10.26461/11.01

Keywords:

Emerging technologies, hurdle technology, fruit juices

Abstract

This study was aimed to investigate the effect of pulsed light (0-71.6 J/cm2, T< 20 °C) in batch mode operation (PLs) in the inactivation of Alicyclobacillus acidoterrestris ATCC 49025 spores, Saccharomyces cerevisiae KE162 andEscherichia coliATCC 35218 cells in natural squeezed apple (Pyrus malus L, var Granny Smith, pH: 3.4; 11.4 ºBrix) and melon (Cucumis melo, var. Honeydew, pH: 5.7 ± 0.2, 8.4 ± 2.5 °Brix) juices, and continuous flow-through pulsed light system (PLc, 0-0.73 J/cm2, 0-0,73 J/cm2,0-0,0175 J/ml,155 ml/min, T<25 °C) single or combined with ultrasound (US, 30 min, T: 25 °C) on the inactivation of E. coli in apple juice. PLsled up to 1.9- 6.2 log reductions in melon juice; and 1.0-2.1 in apple juice for A. acidoterrestris, S. cerevisiae andE. coli,respectively. Single PLcreduced E. colipopulation by 3,1 log cycles, while single US reduced 2,7 log cycles. The combination US+PLcresulted additive as a reduction of 5,7 log cycles was achieved. Biphasic and Weibull models compared to the Coroller model allowed better fit and more accurate estimation of parameters. Processed apple juice was well accepted by a group of consumers who highlighted its fresh natural apple tasting.

Downloads

Download data is not yet available.

References

Anderson, J.G., Rowan, N.J., MacGregor, S.J., Fouracre, R.A., y Farish, O., 2000. Inactivation of food-borne enteropathogenic bacteria and spoilage fungi using pulsed-light. En: IEEE Transactions on Plasma Science, 28, pp.83-88.

Akaike, H., 1973. Proceedings of the 2nd International Symposium of Information. En: B.N. Petrov, y F. Cza’ki (Eds.). En: Information theory and extension of the maximum likelihood principle. Akademiai Kiado: Budapest,pp.267–281.

Alzamora, S.M., Guerrero, S., Viollaz, P., y Welti, J., 2005. Novel food processing. En: Barbosa-Cánovas G. (Ed.). Experimental protocols for modeling the response of microbial populations exposed to emerging technologies: Some points of concern. Nueva York, Marcel Dekker, Inc., pp.591-607.

Alzamora, S.M., Guerrero, S., Schenk, S., Raffellini, S. y López-Malo, A., 2011. Inactivation of microorganisms. En: Feng H., Barbosa-Canovas G., Weiss J., (Eds.). Ultrasound Technologies for Food and Bioprocessing. Nueva York, Springer, pp.321-343.

Bahçeci, K., Gökmen, V., Acar, J., 2005. Formation of guaiacol from vanillin by Alicyclobacillus acidoterrestris in apple juice: a model study. En: European Food Research and Te c h n o l o g y, 220, pp.196-199.

Cerf, O., 1977. Tailing of survival curves of bacterial spores. En: Journal of Applied Microbiology, 42, pp.1-19.

Coroller, L., Leguerinel, I., Mettler, E., Savy, N., y Mafart, P., 2006. General model, based on a two mixed Weibull distributions of bacterial resistance, for describing various shapes of inactivation curves. En: Applied and Environmental Microbiology, 72, pp.6493-6502.

Everitt, B.S., Landau, S., y Leese, M., 2001. Cluster analysis. , Oxford, John Wiley & Sons.

Ferrante, S., Guerrero, S., y Alzamora, S.M., 2007. Combined use of ultrasound and natural antimicrobials to inactivate L. monocytogenes in orange juice. En: Journal of Food Protection, 70, pp.1850-1857.

Ferrario, M., Guerrero, S., y Alzamora, S.M. (2013a). Study of pulsed light-induced damage on Saccharomyces cerevisiae in apple juice by flow cytometry and transmission electron microscopy. En: Food and Bioprocess Technology, 7, pp.1001-1011.

Ferrario, M., Alzamora, S.M., y Guerrero, S., 2013b. Inactivation kinetics of some microorganisms in apple, melon, orange and strawberry juices by high intensity light pulses. En: Journal of Food Engineering, 118, pp.302-311.

Gómez, P., Salvatori, D., García Loredo, A., Alzamora, S.M., 2012. Pulsed light treatment of cut apple: dose effect on color, structure and microbiological stability, En: Food and Bioprocess Technology, 5, pp.2311-2322.

Gómez-López, V., Ragaert, P., Debevere, J., y Devlieghere, F., 2007. Pulsed light for food decontamination: a review. En: Trends in Food Science and Technology, 18, pp.464-473.

Guerrero, S., López-Malo, A., Alzamora, S.M., 2001. Effect of ultrasound on the survival of Saccharomyces cerevisiae: influence of temperature, pH and amplitude. En: Innovative Food Science and Emerging Technologies, 2, pp.31-39.

Guerrero, S., Tognon, M., Alzamora, S.M., 2005. Response of Saccharomyces cerevisiae to the combined action of ultrasound and low weight chitosan. En: Food Control, 16, pp.131-139.

Hierro, E., Barroso, E., De la Hoz, L., Ordóñez, J. Manzano, S. y Fernández, M., 2011. Efficacy of pulsed light for shelf-life extension and inactivation of Listeria monocytogenes on ready-to-eat cooked meat products. En: Innovative Food Science and Emerging Technologies, 3, pp.275-281.

Izquier, A., y Gómez-López, V., 2011. Modeling the pulsed light inactivation of microorganisms naturally occurring on vegetable substrates. En: Food Microbiology, 28, pp.1170-1174.

Jun, S., Irudayaraj, J., Demirci, A., y Geiser, D., 2003. Pulsed UV light treatment of corn meal for inactivation of Aspergillus niger spores. En: International Journal of Food Science and Technology, 38, pp.883–888.

Knorr, D., Zenker, M., Heinz, V., Lee, D., 2004. Applications and potential of ultrasonics in food processing. En: Trends in Food Science and Technology, 15, pp.261–266.

Krishnamurthy, K., Tewari, J., Irudayaraj, J., y Demirci, A., 2010. Microscopic and spectroscopic evaluation of inactivation of Staphylococcus aureus by pulsed light and infrared heating. En: Food and Bioprocess Technology, 3, pp.93-104.

Krishnamurthy, K., Demirci, A. y Irudayaraj, J., 2008. Inactivation of Staphylococcus aureus in milk using flow-through pulsed UV-light treatment system. En: Food Microbiology and Safety, 72, pp.233–239.

Lasagabaster, A. y Martínez, I., 2014. Survival and growth of Listeria innocua treated by pulsed light technology: impact of posttreatment temperature and illumination. En: Food Microbiology, 41, pp.76-81.

Lawless, H., 2013. Segmentation. En: H. Lawless, (Ed.), Quantitative sensory analysis. Psychophysics, models and intelligent design. Oxford, Wiley Blackwell, pp.323-338.

Martínez, A., Díaz, R.V., y Tapia, M.S., 2000. Microbial ecology of spoilage and pathogenic flora associated to fruits and vegetables, En: Alzamora, S.M., Tapia, M., López-Malo, A. (Eds.), Minimally processed fruits and vegetables. Fundamental aspects and applications. Gaithersburg, Aspen publishers Inc., pp.43-62.

Muñoz, A., Palgan, I., Noci, F., Morgan, D., Cronin, D., Whyte, P. y Lyng, J., 2011. Combinations of high intensity light pulses and thermosonication for the inactivation of Escherichia coli in orange juice.En: Food Microbiology, 28, pp.1200-1204.

Muñoz, A., Palgan, I., Noci, F., Cronin, D.A., Morgan, D.J., Whyte, P. y Lyng, J., 2012a. Combinations of selected non-thermal technologies and antimicrobials for microbial inactivation in a buffer system. En: Food Research International, 47, pp.100–105.

Muñoz, A., Caminiti, I., Palgan, I., Pataro, G., Noci, F., Morgan, D., Cronin, D., Whyte, P., Ferrari, G. y Lyng, J., 2012b. Effects on Escherichia coli inactivation and quality attributes in apple juice treated by combinations of pulsed light and thermosonication. En: Food Research International, 45, pp.299–305.

Pataro, G., Muñoz, A., Palgan, I., Noci, F., Ferrari, G. y Lyng, J.G., 2011. Bacterial inactivation in fruit juices using a continuous flow pulsed light (PL) system. En: Food Research International, 44, pp.1642–1648.

Peleg, M. y Cole, M. B., 1998. Reinterpretation of microbial survival curves. En: Critical Reviews in Food Science, 38, pp.353-380.

Piyasena, P., Mohareb, E. y McKellar, R., 2003. Inactivation of microbes using ultrasound. A review. En: International Journal of Food Microbiology, 87, pp.207-216.

Quinn, G. y Keough, M., 2002. Generalized linear models and logistic Regression.En:Quinn G. y Keough M., M. Experimental design and data analysis for biologists. Cambridge, Cambridge University Press, pp.359-380.

Sauer, A. y Moraru, C., 2009. Inactivation of Escherichia coli ATCC 25922 and Escherichia coli O157:H7 in apple juice and apple cider using pulsed light treatment. En: Journal of Food Protection, 72, pp.937-944.

Silva, F., Gibbs, P., 2001. Alyciclobacillus acidoterrestris spores in fruit products and design of pasteurization processes. En: Trends in Food Science and Technolog y, 12, pp.68-74.

Smit, Y., Cameron, M., Venter, P., Witthuhn, R., 2010. Alyciclobacillus spoilage and isolation- A review. En: Food Microbiology, 28, pp.331-349.

Stratford, M., Hofman, P., Cole, M., 2000. Fruit juices, fruit drinks, and soft drinks, En: Lund, B.M., Baired Parker, T.C., Gould, G.W. (Eds.). Microbiological safety and quality of food. Gaithersburg, Aspen Publishers Inc., pp.836-850.

Vercammen, A., Vivijs, B., Lurquin, I., Michiels, C., 2012. Germination and inactivation of Bacillus coagulansand Alicyclobacillus acidoterrestris spores by high hydrostatic pressure treatment in buffer and tomato sauce. En: International Journal of Food Microbiology, 152, pp.162-167.

Wekhof, A., 2000. Desinfection with flash lamps. En: PDA Journal of Pharmaceutical Science and Technology, 54, pp.264-275.

Published

2016-07-07

How to Cite

Ferrario, M., & Guerrero, S. (2016). Study of the inactivation of spoilage microorganisms in apple and melon juices by pulsed light and ultrasound. INNOTEC, 1(11 ene-jul), 9–17. https://doi.org/10.26461/11.01

Issue

Section

Articles