Continuous hydrologic simulation in the Cuareim basin with the MGB-IPH model

Authors

  • Magdalena Crisci Instituto de Mecánica de los Fluidos e Ingeniería Ambiental, Facultad de Ingeniería, Universidad de la República
  • Christian Chreties Instituto de Mecánica de los Fluidos e Ingeniería Ambiental, Facultad de Ingeniería, Universidad de la República
  • Luis Silveira Instituto de Mecánica de los Fluidos e Ingeniería Ambiental, Facultad de Ingeniería, Universidad de la República

DOI:

https://doi.org/10.26461/10.03

Keywords:

Hydrological modeling, water resources management

Abstract

Although Uruguay has an abundant water supply, the increase of water demand together with the increase atmospheric demand and climate variability (associated with climate change), calls for the need for hydrological modeling tools for the sustainable management of water resources in the country. The aim of this work is to analyze, implement and calibrate the MGB-IPH hydrological model (Collischonn, et al., 2007) in the Cuareim basin, where there is a strong competition for water demand, primarily for rice irrigation. The model analysis allowed to associate their most important parameters with known physical data of the basin (and nationwide) and recognize the most sensitive parameters. The implementation and calibration of the model in the Cuareim basin yielded a hydrological model that properly represents the observed flows. The model can be easily implemented in others national basins, taking into account their physical parameters.

Downloads

Download data is not yet available.

References

Abbott, M, Bathurst, J., Cunge, J., O’Connell, P. y Rasmussen, J., 1986. An Introduction to the European System: Systeme Hydrologique Europeen (SHE). En: Journal of Hydrology, 87, pp.61-77.

Alonso, J., 2007. Simulation of land-use change in two experimental micro basins in Uruguay: SHETRAN validation. Newcastle: University of Newcastle. (Training activity at the School of Civil Engineering and Geosciences, Final Report)

Arnold, J.G., Allen, P.M. y Bernhardt, G., 1993. A comprehensive surface-groundwater flow model. En: Journal of Hydrology, 142(1-4), pp.47-69.

Birkinshaw, S.J., James, P. y Ewen, J., 2010. Graphical user interface for rapid set-up of SHETRAN physically-based river catchment model. En: Environmental Modelling & Software, 25, pp.609–610.

Burnash, R. J. C., 1995. The NWS river forecast system catchment modeling. En: Singh, V.P. (ed.). Computer models of watershed hydrology. Colorado: Water Resources Publication. Chapter 10.

Collischonn, W., Allasia, D., Da Silva, B. C., y Tucci, C. E., 2007. The MGB-IPH model for large-scale rainfall-runoff modelling. En: Hydrological Sciences Journal, 52(5), pp.878-895.

Chow, V. T., Maidment, D. R. y Mays, L. W., 1994. Hidrología aplicada. Bogotá: McGraw-Hill.

Ewen J., Parkin G., O’Connell P.E., 2000. SHETRAN: distributed river basin flow and transport modeling system. En: Journal of Hydrologic Engineering, 5, pp.250–258.

Fernández, J.C., 1979. Estimaciones de densidad aparente, retención de agua a tensiones de –1/3 y –25 bar y agua disponible en el suelo a partir de la composición granulométrica y porcentaje de materia orgánica. 2da Reunión Técnica. Montevideo: Facultad de Agronomía, Universidad de la República.

Gassman, P.W., Reyes, M.R., Green, C.H. y Arnold, J.G., 2007. The soil and water assessment tool: historical development, applications, and future research directions. En: T ASABE, 50(4), pp.1211-50.

Geetha, K., Mishra, S. K., Eldho, T. I., Rastogi, A. K., y Pandey, R. P., 2008. SCS-CN-based continuous simulation model for hydrologic forecasting. En: Water resources management, 22(2), pp.165-190.

Geetha, K., Mishra, S. K., Eldho, T. I., Rastogi, A. K., y Pandey, R. P., 2007. Modifications to SCS-CN method for long-term hydrologic simulation. En: Journal of Irrigation and Drainage Engineering, 133(5), pp.475-486.

Genta, J.L., Chreties, Ch., Sordo, A., Gussoni, J. y Molfino, J.H., 2005. Balances hídricos superficiales en la cuenca del Río Cuareim con fines de gestión del recurso agua y el impacto en las crecientes. Montevideo: IMFIA-DNH-CRC.

Jarvis, A., Reuter, H.I., Nelson, A., Guevara, E., 2008, Hole-filled SRTM for the globe Version 4, available from the CGIAR-CSI SRTM 90m. Disponible en: http://srtm.csi.cgiar.org.

Lamont, S., Eli, R. y Fletcher, J., 2008. Continuous hydrologic models and curve numbers: a path forward. En: Journal of Hydrologic Engineering, 13(7), pp.621–635.

Liang, X., Lettenmaier, D.P., Wood, E.F. y Burges, S.J., 1994. A Simple hydrologically based model of land surface water and energy fluxes for GSMs. En: Journal of Geophys. Res., 99(D7)(14), pp.415-428.

Molfino, J.H. y Califra, A., 2001. Agua disponible de las tierras del Uruguay. Montevideo: División de Suelos y Aguas, Ministerio de Ganadería Agricultura y Pesca.

Ministerio de Vivienda Ordenamiento Territorial y Medio Ambiente (MVOTMA), 2011. Manual de diseño y construcción de pequeñas presas. Montevideo: MVOTMA.

Rawls, W.J., Ahuja, L.R., Brakensiek, D.L. y Shirmohammadi, A., 1993. Infiltration and soil water movement. En: Maidment, B.D. Handbook of hydrology. New York: McGraw-Hill. Chapter, 5.1-5.

Silva, A., Ponce de León, J., García, F. y Durán, A., 1988. Aspectos metodológicos en la determinación de la capacidad de retener agua en los suelos del Uruguay. Montevideo: Facultad de Agronomía. (Boletín de Investigación, 10).


Silveira, L., 1998. Modelación hidrológica de pasturas naturales con pendientes suaves en la zona templada. Stockholm: KTH. (Tesis PhD).

Todini, E., 1996. The ARNO rainfall-runoff model. En: Journal of Hydrology, 175(1), pp.339-382.

Tucci, C.E.M., 1998. Modelos hidrológicos. Porto Alegre: ABRH.

Published

2015-12-15

How to Cite

Crisci, M., Chreties, C., & Silveira, L. (2015). Continuous hydrologic simulation in the Cuareim basin with the MGB-IPH model. INNOTEC, (10 ene-dic), 40–48. https://doi.org/10.26461/10.03

Issue

Section

Articles

Most read articles by the same author(s)