Evaluation of the role of lycopene in the tolerance to chilling injury during cold storage of red grapefruit
DOI:
https://doi.org/10.26461/11.06Keywords:
Carotenoids, citrus, cold storage, lycopene, postharvest, HPLCAbstract
Grapefruit are sensitive to develop chilling injury (CI) symptoms during low temperature storage. In red grapefruit Star Ruby chilling damage during cold storage was restricted to yellow areas of the skin, while the red areas that accumulate lycopene remain largely unaffected. CI has been associated with the production of reactive oxygen species and lycopene has potent antioxidant capacity, thus this pigment might be responsible or be involved in the tolerance against oxidative damage. To test this hypothesis, we have compared the postharvest behavior at low temperatures between grapefruit with great differences in lycopene content (0,92vs.45,2 μg/gPF). Fruit with high concentration of lycopene in the skin (50 times) were more tolerant to CI and at the same time had a higher capacity (2-3 times) to scavenger singlet oxygen radical (SOAC). The study of the enzymatic antioxidant and non-enzymatic (ascorbic acid and glutathione) systems did not revealed an important role in the protection against CI. Collectively, these results suggest that in grapefruits singlet oxygen would be involved in the oxidative damage caused by storage at low temperatures and that lycopene may protect against the cell damage caused by this reactive oxygen species, increasing then the tolerance to cold stress.
Downloads
References
Alós, E., Rodrigo, MJ. y Zacarías, L., 2014. Differential transcriptional regulation of L-ascorbic acid content in peel and pulp of citrus fruits during development and maturation. En: Planta, 239, pp.1113–1128.
Alquezar, B., Rodrigo, MJ. y Zacarías, L., 2008. Regulation of carotenoid biosynthesis during fruit maturation in the red-fleshed orange mutant Cara Cara. En: Phytochemistry, 69, pp.1997–2007.
Apel, K. y Hirt, H., 2004. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. En: Annual Review of Plant Biology, 55, pp.373–399.
Arbona, V., Flors, V., Jacas, J., García-Agustín, P. y Gómez-Cadenas, A., 2003. Enzymatic and non-enzymatic antioxidant responses of Carrizo citrange, a salt-sensitive citrus rootstock, to different levels of salinity. En: Plant & Cell Physiology, 44, pp.388–394.
Bradford, MM., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. En: Analytical Biochemistry, 72, pp.248–254.
Chongchatuporn, U., Ketsa, S., van Doorn, WG., 2013. Chilling injury in mango (Mangifera indica) fruit peel: Relationship with ascorbic acid concentrations and antioxidant enzyme activities. En: Postharvest Biology and Technology, 86, pp.409–417.
Ghasemnezhad, M., Marsh, K., Shilton, R., Babalar, M. y Woolf, A., 2008. Effect of hot water treatments on chilling injury and heat damage in “satsuma” mandarins : Antioxidant enzymes and vacuolar ATPase, and pyrophosphatase. En: Postharvest Biology and Technology, 48, pp.364–371.
Hossain, Z., Nouri, MZ. y Komatsu, S., 2012. Plant cell organelle proteomics in response to abiotic stress. En: Journal of Proteome Research, 11, pp.37–48.
Kim, SH., Ahn, YO., Ahn, MJ., Lee, H-S. y Kwak, SS., 2012. Down-regulation of β-carotene hydroxylase increases β-carotene and total carotenoids enhancing salt stress tolerance in transgenic cultured cells of sweetpotato. En: Phytochemistry, 74, pp.69–78.
Lado, J., Rodrigo, MJ., Cronje, P. y Zacarías, L., 2015a. Involvement of lycopene in the induction of tolerance to chilling injury in grapefruit. En: Postharvest Biology and Te c h n o l o g y, 100, pp.176–186.
Lado, J., Cronje, P., Alquézar, B., Page, A., Manzi, M., Gómez-Cadenas, A., Stead, AD., Zacarías, L. y Rodrigo, MJ., 2015b. Fruit shading enhances peel color, carotenes accumulation and chromoplast differentiation in red grapefruit. En: Physiologia Plantarum, 154, pp.469–484.
Lafuente, MT., Martínez-Téllez, MA. y Zacarías, L., 1997. Abscisic acid in the response of “ fortune ” mandarins to chilling . Effect of maturit y and high-temperature conditioning. En: Journal of the Science of Food and Agriculture, 73, pp.494–502.
Lafuente, MT., Sala, JM. y Zacarias, L., 2004. Active oxygen detoxifying enzymes and phenylalanine ammonia-lyase in the ethylene-induced chilling tolerance in citrus fruit. En: Journal of Agricultural and Food Chemistry, 52, pp.3606–3611.
Lafuente, MT. y Zacarías, L., 2006. Postharvest physiological disorders in citrus fruit. En: Stewart Postharvest Review, 2, pp.1–9.
Martínez, A., Melendez-Martínez, AJ., 2015. Lycopene, oxidative cleavage derivatives and antiradical activity. En: Computational and Theoretical Chemistry, 1077, pp.92-98.
Di Mascio, P., Kaiser, S. y Sies, H., 1989. Lycopene as the most efficient biological carotenoid singlet oxygen quencher. En: Archives of Biochemistry and Biophysics, 274, pp.532–538.
Ouchi, A., Aizawa, K., Iwasaki, Y., Inakuma, T., Terao, J., Nagaoka, S. y Mukai, K., 2010. Kinetic study of the quenching reaction of singlet oxygen by carotenoids and food extracts in solution. Development of a singlet oxygen absorption capacity (SOAC) assay method. En: Journal of Agricultural and Food Chemistry, 58, pp.9967–9978.
Qian, C., He, Z., Zhao, Y., Mi, H., Chen, X. y Mao, L., 2013. Maturity-dependent chilling tolerance regulated by the antioxidative capacity in postharvest cucumber (Cucumis sativus L.) fruits. En: Journal of the Science of Food and Agriculture, 93, pp.626–633.
Rodrigo, MJ., Marcos, J., Alférez, F., Mallent, D. y Zacarías, L., 2003. Characterization of Pinalate, a novel Citrus sinensis mutant with a fruit-specific alteration that results in yellow pigmentation and decreased ABA content. En: Journal of Experimental Botany, 54, pp.727–738.
Sala, JM. y Lafuente, MT., 1999. Catalase in the heat-induced chilling tolerance of cold-stored hybrid Fortune mandarin fruits. En: Journal of Agricultural and Food Chemistry, 47, pp.2410–2414.
Sala, JM. y Lafuente, MT., 2000. Catalase enzyme activity is related to tolerance of mandarin fruits to chilling. En: Postharvest Biology and Technology, 20, pp.81–89.
Sevillano, L., Sanchez-Ballesta, MT., Romojaro, F. y Flores, FB., 2009. Physiological, hormonal and molecular mechanisms regulating chilling injury in horticultural species. Postharvest technologies applied to reduce its impact. En: Journal of the Science of Food and Agriculture, 89, pp.555–573.
Singh, P. yGoyal, GK., 2008. Lycopene : its properties and anticarcinogenic effects. En: Comprehensive Reviews in Food Science and Food Safety, 7, pp.255–270.
Toivonen, PMA., 2004. Postharvest storage procedures and oxidative stress. En: Hortscience, 39, pp.938-942.
Wagner, D., Przybyla, D., Op den Camp, R., Kim, C., Landgraf, F., Lee, KP., Würsch, M., Laloi, C., Nater, M., Hideg, E. y Apel, K., 2004. The genetic basis of singlet oxygen-induced stress responses of Arabidopsis thaliana. En: Science, 306, pp.1183–1185.
Zhang, Y., Butelli, E., De Stefano, R., Schoonbeek, H-J., Magusin, A., Pagliarani, C., Wellner, N., Hill, L., Orzaez, D., Granell, A., Jones, JDG. y Martin. C., 2013. Anthocyanins double the shelf life of tomatoes by delaying overripening and reducing susceptibility to gray mold. En: Current Biology, 23, pp.1094–1100.
Downloads
Published
How to Cite
Issue
Section
License
Los autores del manuscrito declaran conocer y aceptar los siguientes términos de responsabilidad:
Haber participado lo suficiente en el trabajo como para hacer pública la responsabilidad por su contenido.
Que el manuscrito representa un trabajo original que no fue publicado ni está siendo considerado por otra revista para su publicación, en parte o en forma íntegra, tanto impresa como electrónica.
Que en caso de ser solicitado, procurará o cooperará en la obtención y suministro de datos sobre los cuales el manuscrito esté basado.
Declara que la información divulgada que pudiera pertenecer a un tercero cuenta con la autorización correspondiente.
Autorización para la publicación y compromiso de cita de primera publicación
Los autores/as conservan los derechos de autor y ceden a la revista INNOTEC / INNOTEC Gestión el derecho de la primera publicación, con el trabajo registrado con la licencia de atribución Creative Commons Reconocimiento-NoComercial 4.0 Internacional. Creative Commons, que permite a terceros utilizar lo publicado siempre que mencionen la autoría del trabajo y a la primera publicación en esta revista sin fines comerciales.
El autor se compromete a realizar la cita completa de la edición institucional de esta primer publicación en las siguientes publicaciones -completas o parciales- efectuadas en cualquier otro medio de divulgación, impreso o electrónico.
Los autores/as pueden realizar otros acuerdos contractuales no comerciales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en esta revista (p. ej., incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en esta revista.
Se permite a los autores/as publicar su trabajo en Internet (por ejemplo en páginas institucionales o personales) antes y durante el proceso de revisión, ya que puede conducir a intercambios productivos y a una mayor y más rápida difusión del trabajo publicado (vea The Effect of Open Access). A su vez los autores/as autorizan al LATU a publicar el trabajo en su repositorio digital.
Los conceptos y opiniones vertidos en los artículos son de responsabilidad de sus autores.
Este obra está bajo una licencia Reconocimiento-NoComercial 4.0 Internacional.