A methodological approach to quantify the cognitive effects in sensorial analysis of food

Authors

  • Ellen Cristina Moronte Laboratório de Física Aplicada e Computacional - Faculdade de Zootecnia e Engenharia de Alimentos - Universidade de São Paulo
  • Ana Livia Freitas Huet de Oliveira Castro Laboratório de Física Aplicada e Computacional - Faculdade de Zootecnia e Engenharia de Alimentos - Universidade de São Paulo
  • Ana Carolina de Sousa Silva Laboratório de Física Aplicada e Computacional - Faculdade de Zootecnia e Engenharia de Alimentos - Universidade de São Paulo
  • Marcela Marinho Muraro Laboratório de Física Aplicada e Computacional - Faculdade de Zootecnia e Engenharia de Alimentos - Universidade de São Paulo
  • Aldo Ivan Cespedes Arce Laboratório de Física Aplicada e Computacional - Faculdade de Zootecnia e Engenharia de Alimentos - Universidade de São Paulo
  • Gustavo Voltani Von Atzingen Instituto Federal de São Paulo
  • Adriano Rogério Bruno Tech Laboratório de Física Aplicada e Computacional - Faculdade de Zootecnia e Engenharia de Alimentos - Universidade de São Paulo
  • Luciana Vieira Piza Laboratório de Física Aplicada e Computacional - Faculdade de Zootecnia e Engenharia de Alimentos - Universidade de São Paulo
  • Ernane José Xavier Costa Laboratório de Física Aplicada e Computacional - Faculdade de Zootecnia e Engenharia de Alimentos - Universidade de São Paulo

DOI:

https://doi.org/10.26461/11.05

Keywords:

Electroencephalogram (EEG), Food Choice, Taste Stimuli

Abstract

This work aims to propose a sensorial analysis method which allows quantitative evaluation of taste stimuli within a cognitive context using electroencephalogram monitoring. The experiment was conducted in two steps: (a) Determination of flavor perception threshold and (b) investigation of the flavor perception below conscious threshold using electroencephalogram (EEG). The volunteer’s digital signal processing was performed using time-frequency analysis by the AGR method. This method evaluates the signal behavior in the time-frequency framework by means of representative coefficients. It could be verified that the 3rd AGR representative coefficient was noiseless and then EEG information was better characterized. Thus it was possible to verify that the coefficient provided linear separation of sucrose concentration, therefore, was able to represent the EEG behavior in the time-frequency framework by separating sucrose concentrations independent of subject response. These results suggest that the methodology described in this article can be used as a tool to complement the sensory analysis.

Downloads

Download data is not yet available.

References

Costa, E.J.X. y Cabral, E., 2000. EEG-based discrimination between imagination of left and right hand movements using adaptive Gaussian representation. En: Medical Engineering & Physics, 22(5), pp.345-348.

Esteves, E., 2010. Statistical analysis in food science. En: Cruz, Rui M.S., ed. Practical food and research. Cap.16. New York: Nova Science Publishers. ISBN: 978-1-61761-057-8.

Furst, T., Connors, M., Bissogni, C.A., Sobal, J. y Falk, L.W., 1996. Food choice: a conceptual model of the process. En:Appetite, 26(3), pp.247-66.

Jasper, H. H., 1958. The ten-twenty electrode system of the international federation. En: Electroencephalography and Clinical Neurophysiology, Limerick, 10(2), pp.371-375.

Hashida, J.C., Silva, A.C.S., Souto, S. y Costa, E.J.X. , 2005. EEG pattern discrimination between salty and sweet taste using adaptive Gabor transform. En: Neurocomputing, 68, pp.251-257.

International Organization for Standardization, 2011. ISO 3972: Sensory analysis. Methodology. Method of investigation sensitivity of taste. Ginebra: ISO.

Kobayakawa, T., Endo, H., Ayabe-Kanamura, S., Kumagai, T., Yamaguchi, Y., Kikuchi, Y., Takeda, T., Saito, S. y Ogawa, H., 1996. The primary gustatory area in human cerebral cortex studied by magnetoencephalography. En: Neuroscience Letter, 212(3), pp.155-158.

Larsson, M., Larsson, K., 1997. Neglected aspects of food flavor perception. En: Colloids and Surfaces A: Physicochemical and Engineering Aspects, 123-124, pp.651- 655.

Mallat, S. y Zhang, Z., 1993. Matching pursuit with time-frequency dictionaries. En: IEEE Trans Signal Processing, 41(12), pp.3397-415.

Maruyama, T.T., Arce, A.I.C., Ribeiro, L.P. y Costa, E.J.X., 2008. Time–frequency analysis of acoustic noise produced by breaking of crisp biscuits. En: Journal of Food Engineering,86(1), pp.100-104.

Myers, D.G., 1999. Introdução à psicologia geral. 5a ed. Rio de Janeiro: LTC. ISBN 85-216-1186-2.

Okamoto, M. y Dan, I., 2007. Functional near-infrared spectroscopy for human brain mapping of taste-related cognitive functions. En: Journal of Bioscience and Bioengineering, 103(3), pp.207-215.

Qian, S. y Chen, D., 1994. Signal representation using adaptive normalized Gaussian functions. En: Signal Processing, 36, pp.1-11.

Published

2016-07-14

How to Cite

Moronte, E. C., Castro, A. L. F. H. de O., Silva, A. C. de S., Muraro, M. M., Arce, A. I. C., Atzingen, G. V. V., Tech, A. R. B., Piza, L. V., & Costa, E. J. X. (2016). A methodological approach to quantify the cognitive effects in sensorial analysis of food. INNOTEC, 1(11 ene-jul), 42–46. https://doi.org/10.26461/11.05

Issue

Section

Articles