Review of technologies for the control of harmful cyanobacteria and algal blooms in waterbodies, with emphasis in the use of ultrasound irradiation

Authors

  • Diana Margarita Míguez Caramés Programa Aguas, Proyectos Ambientales, Gerencia I+D+i, Laboratorio Tecnológico del Uruguay (LATU) y Fundación del LATU para la investigación (Latitud) http://orcid.org/0000-0001-5364-5951

DOI:

https://doi.org/10.26461/12.06

Keywords:

Harmful algal and cyanobacterial blooms, Ultrasound, Eutrophication, Lake restoration, Ecotoxicity

Abstract

This review summarizes the advantages and disadvantages of methods of control of harmful algal and cyanobacterial blooms and/or their toxins in watercourses or in drinking water. In recent years, the blooming phenomena, or the excessive growth of cyanobacteria, have increased in extent and frequency around the world, involving increasingly higher environmental and health risks due to the potential production of toxins. In addition, the concomitant decrease in the levels of dissolved oxygen in waters cause effects on the ecosystems that could even lead to fish mortality events. The methods used to control and remediate the blooms range from chemicals to destroy the cells or they focus on reducing the concentration of phosphorus and other nutrients in the water and sediments, to biological based on predator-prey relationships, and to physical methods, aimed to attacking the cell structure, affect its buoyancy or their viability, including among them the ultrasound technology, of promising applicability, but requiring further research to evaluate its efficiency and safety. A reference is made to research plans undertaken in the framework of the LATU/Latitud Water Program, by using a commercial ultrasound irradiation equipment in a eutrophic pond.

Downloads

Download data is not yet available.

References

Azevedo, S., Carmichael, W., Jochimsen, E., Rinehart, K., Lau, S., Shaw, G. y Eaglesham, G., 2002. Human intoxication by microcystins during renal dialysis treatment in Caruaru-Brazil. En: Toxicology, 181-182, pp.441-446.

Al-Juboori, R. A., Aravinthan, V., y Yusaf, T., 2015. Impact of pulsed ultrasound on bacteria reduction of natural waters. En: Ultrasonics Sonochemistry, 27, pp.137–147.

Banack, S. A., Murch, S. J. y Cox, P. A., 2006. Neurotoxic flying foxes as dietary items for the Chamorro people, Marianas Islands. En: Journal of Ethnopharmacology, 106, pp.97–104.

Chorus, I., Bartram. J., ed., 1999. Toxic cyanobacteria in water: a guide to their public health consequences, monitoring and management. London: E&FN Spon.

CORDIS, s.d.Final report summary - CLEARWATERPMPC (Development of an efficient environmentally-friendly Algae Control System, based on ultrasound technology, designed for use in bigger ponds and lakes) [En línea]. [s.l.]: CORDIS.[Consulta: noviembre de 2016]. Disponible en: http://cordis.europa.eu/result/rcn/156461_en.html

Dehghani, M. H., 2016. Removal of cyanobacterial and algal cells from water by ultrasonic waves — A review. En: Journal of Molecular Liquids, 222, pp.1109-1114.

Dunn, F. y Pond, J.B., 1978. Selected non-thermal mechanisms of interaction of ultrasound and biological media. Chap. IX. En: Fry, Francis J., ed., 1978. Ultrasound: its application in medicine and biology . New York: Elsevier.

Gerling, A. B., Browne, R.G.,Gantzer, P.A., Mobley, M.H., Little, J.C. y Carey, C.C., 2014. First report of the successful operation of a side stream supersaturation hypolimnetic oxygenation system in a eutrophic, shallow reservoir. En: Water Resources, 67, pp.129–143

Giannuzzi, L., Sedan, D., Echenique, R. y Andrinolo, D., 2011. An acute case of intoxication with cyanobacteria and cyanotoxins in recreational water in Salto Grande Dam, Argentina. En: Marine Drugs, 9(11), pp. 2164-2175.

He, X., Liu, Y.-L., Conklin, A., Westrick, J., Weavers, L. K., Dionysiou, D. D, Lenhart, J.J., Mouser, P.J., Szlag, D. y Walker, H.W., 2016. Toxic cyanobacteria and drinking water: Impacts, detection, and treatment. En: Harmful Algae, 54, pp.174–193.

Holm, E.R., Stamper, D.M., Brizzolara, R.A., Barnes, L., Deamer, N. y Burkholder, J.M., 2008. Sonication of bacteria, phytoplankton and zooplankton: Application to treatment of ballast water. En: Marine Pollution Bulletin, 56, pp.1201–1208.

International Centre for Research on Cancer, [s.d]. IARC monographs on the evaluation of carcinogenic risks to humans . List of classifications [En línea]. Lyon: IARC. [Consulta: 18 de noviembre de 2016]. Disponible en: http://monographs.iarc.fr/ENG/Classification/latest_classif.php.

Kaser, M. y Perdue, A., 2015. Utilizing ultrasonic technology to manage algal blooms in Lake Rockwell. En: Honors Research Projects, Paper 68.

Kruk, C., Piccini, C., Segura, A., Nogueira, L., Carballo, C., Martínez De La Escalera Siri, G., Calliari, D., Ferrari, G., Simoens, M., Cea, J., Alcántara, I., Vico, P. y Míguez, D., 2015. Herramientas para el monitoreo y sistema de alerta de floraciones de cianobacterias nocivas: Río Uruguay y Río de la Plata. En: INNOTEC, 10, pp. 23-39.

Kundu, S., Coumar, M., Rajendiran, S. y Ajay, Rao, A., 2015. Phosphates from detergents and eutrophication of surface water ecosystem in India. En: Current Science, 108(7), pp.1320-1325.

López, C.B., Jewett, E.B., Dortch, Q., Walton, B.T. y Hudnell, H.K., 2008. Scientific assessment of freshwater harmful algal blooms. Washington: Interagency Working Group on Harmful Algal Blooms, Hypoxia, and Human Health of the Joint Subcommittee on Ocean Science and Technology.

Assessment of Freshwater Harmful Algal Blooms. En Interagency Working Group on Harmful Algal Blooms, Hypoxia, and Human Health of the Joint Subcommittee on Ocean Science and Technology. Washington, DC.

Luo, J., Fang, Z. y Smith, R. L., 2014. Ultrasound-enhanced conversion of biomass to biofuels. En: Progress in Energy and Combustion Science, 41, pp.56–93.

Lürling, M. y Tolman, Y., 2014. Beating the blues: Is there any music in fighting cyanobacteria with ultrasound? En: Water Resources, 66, pp. 361–373.

Merel, S., Walker, D., Chicana, R., Snyder, S., Baurès, E. y Thomas, O., 2013. State of knowledge and concerns on cyanobacterial blooms and cyanotoxins. En: Environment International, 59, pp.303–327.

American National Standards Institute, 1988. NSF/ANSI 61: Drinking water system components. Michigan: NSF.

O’Brien Jr, W.D., 1978. Safety of ultrasound. En: deVlieger, M., et al., eds. Clinical handbook of ultrasound. New York: Wiley.

OMS, 2011. Guías para la calidad del agua potable [En línea]. 3ª ed. Ginebra: OMS. [Consulta: 18 de noviembre de 2016]. Disponible en: http://www.who.int/water_sanitation_health/dwq/gdwq3rev/es/

OMS, 2015. Water-related diseases . Cyanotoxins [En línea]. Ginebra: OMS. [Consulta: 11 de junio de 2015]. Disponible en: http://www.who.int/water_sanitation_health/diseases/cyanobacteria/en/

Pablo, J., Banack, S., Cox, P., Johnson, T., Papapetropoulos, S., Bradley, W., Buck, A. y Mash, D., 2009. Cyanobacterial neurotoxin BMAA in ALS and Alzheimer’s disease’. En: Acta Neurologica Scandinavica, 120(4), pp. 216-225.

Paerl, H. W., Gardner, W. S., Havens, K. E., Joyner, A. R., McCarthy, M. J., Newell, S. E., Qing, B. y Scott, J.T., 2016. Mitigating cyanobacterial harmful algal blooms in aquatic ecosystems impacted by climate change and anthropogenic nutrients. En: Harmful Algae, 54, pp. 213–222.

Rajasekhar, P., Fan, L., Nguyen, T. y Roddick, F.A., 2012. A review of the use of sonication to control cyanobacterial blooms. En: Water Research, 46(14), pp.4319–4329.

Schmidt, J. R., Wilhelm, S. W. y Boyer, G. L., 2014. The fate of microcystins in the environment and challenges for monitoring. En: Toxins, 6(12), pp.3354–3387. http://doi.org/10.3390/toxins6123354

Søndergaard, M., Liboriussen, L., Pedersen, A.R. y Jeppesen, E., 2008. Lake restoration by fish removal: short-and long-term effects in 36 danish lakes. En: Ecosystems, 11, pp.1291-1305.

Szlag, D. C., Sinclair, J. L., Southwell, B. y Westrick, J. A., 2015. Cyanobacteria and cyanotoxins occurrence and removal from five high-risk conventional treatment drinking water plants. En: Toxins, 7(6), pp.2198–2220. http://doi.org/10.3390/toxins7062198.

Tekile, A., Kim, I. y Kim, J., 2015. Mini-review on river eutrophication and bottom improvement techniques, with special emphasis on the Nakdong River. En: Journal of Environmental Sciences, 30, pp.113-121.

University of Adelaide, 2010. Using ultrasound to control toxic algal blooms [En línea]. Adelaide: University of Adelaide. [Consulta: noviembre de 2016]. Disponible en: https://www.adelaide.edu.au/news/news40181.html

USEPA, 2015. Cyanobacteria/cyanotoxins . Nutrient policy and data [En línea]. Boston: USEPA. [Consulta: 11 de noviembre de 2016]. Disponible en: http://www2.epa.gov/nutrient-policy-data/cyanobacteriacyanotoxins.

Virkutyte, J., 2015. 36 – The use of power ultrasound in biofuel production, bioremediation, and other applications. En: Power Ultrasonics, pp.1095–1122.

Wells, M. L., Trainer, V. L., Smayda, T. J., Karlson, B. S. O., Trick, C. G., Kudela, R. M. y Cochlan, W. P., 2015. Harmful algal blooms and climate change: Learning from the past and present to forecast the future. En: Harmful Algae, 49, pp.68–93.

Wu, X., Joyce, E.M. y Mason, T.J., 2011. The effects of ultrasound on cyanobacteria . En: Harmful algae, 10, pp.738-743.

Zinadini, S., Rahimi, M., Zinatizadeh, A. A. y Shaykhi Mehrabadi, Z., 2015. High frequency ultrasound-induced sequence batch reactor as a practical solution for high rate wastewater treatment. En: Journal of Environmental Chemical Engineering, 3(1), pp.217–226.

Published

2016-12-22

How to Cite

Míguez Caramés, D. M. (2016). Review of technologies for the control of harmful cyanobacteria and algal blooms in waterbodies, with emphasis in the use of ultrasound irradiation. INNOTEC, (12 ago-dic), 54–61. https://doi.org/10.26461/12.06

Issue

Section

Reviews