Spiders and carabids as potential bioindicators in eastern Uruguayan environments with different degree of anthropic intervention: a preliminary study
DOI:
https://doi.org/10.26461/13.11Keywords:
Predators, Carabidae, Araneae, intensificationAbstract
Some arthropod groups are considered to be good bioindicators of environmental quality. For that, they must fill some conditions, such as biological and morphological characteristics that lead to their easy find and identification. The pit-fall traps are widely used as an efficient method to collect predator arthropods that may have a good potential as bioindicators of the characteristics of their environment. During a nine months period, fortnightly collects were made in three production systems with different intensity of anthropic intervention, in the Laguna Negra basin, Rocha, Uruguay: natural grassland with low intensity of bovine cattle grazing; bovine and sheep grazed area, and an area under high bovine grazing intensity with winter-summer agriculture. In each of the three areas two series of 10 pitfall traps were installed with a distance 100 m minimum between series and 10 m between traps. Two spider morphospecies, Mesabolivar sp (Pholcidae) y Steatoda sp (Theridiidae) appeared to be good indicators for the less and most intensified environments, respectively. Other four morphospecies of the families Nemesiidae, Oxyopidae, Lycosidae y Palpimanidae were characterized as detectors to different environments. Four morphospecies of the coleopteran family Carabidae (Calosoma retusum, Galerita collaris, Brachinus sp and Pelecium sp) were defined as indicators of the more intensified system, with agriculture.
Downloads
References
Barriga, J.C., Lassaletta, L. y Moreno, A.G., 2010. Ground-living spiderr assemblages from Mediterranean habitats under different management conditions. En: The Journal of Arachnology, 38, pp.258–269.
Benamú, M. A., 2007. Clave para la determinación de algunas familias de arañas (Araneae, Araneomorphae) del Uruguay. En: Boletín Sociedad Zoológica del Uruguay, 1, pp.1-19.
Bolduc, E., Buddle, C.M., Bostanian, N.J. y Vincent, C., 2005. Ground-dwelling spider fauna (Araneae) of two vineyards in Southern Quebec. En: Environmental Entomology, 34(3), pp.635-645.
Braun-Blanquet, J. 1979. Fitosociología. Bases para el estudio de las comunidades vegetales. Madrid: Blume.
Brennan, K.E.C., Majer, J.D. y Reygaert, N., 1999. Determination of an optimal pitfall trap size for sampling spiders in a western australian jarrah forest. En: Journal of Insect Conservation, 3, pp.297-307.
Brennan, K.E.C., Majer, J.D. y Moir, M.L., 2005. Refining sampling protocols for inventorying invertebrate biodiversity: influence of drift-fence length and pitfall trap diameter on spiders. En: The Journal of Arachnology, 33, pp.681–702.
Bryan, K.M. y Wratten, S.D., 1984. The responses of polyphagous predators to prey spatial heterogeneity: aggregation by carabid and staphylinid beetles to their cereal aphid prey. En: Ecological Entomology, 9, pp.251–259.
Buddle, C.M. y Hammond, H.E.J., 2003. Comparison of ground beetles (Coleoptera: Carabidae) and spiders (Araneae) collected in pan and pitfall traps. En: The Canadian Entomologist, 135, pp.609-611.
Bury, R.B. y Corn, P.S., 1987. Evaluation of pitfall trapping in northwestern forests: Trap arrays with drift fences. En: Journal of Wildlife Management, 51, pp.112–119.
Cameron, K.H. y Leather, S.R., 2012. How good are carabid beetles (Coleoptera, Carabidae) as indicators of invertebrate abundances and order richness? En: Biodiversity and Conservation, 21, pp.763-779.
Capocasale, R.M. y Gudynas, E., 1993. La fauna de opiliones (Arachnida) del criptozoos de Sierra de las Ánimas (Uruguay). En: Aracnología, 19/20, pp.1-15.
Cardinale, B. J., Duffy, E., Gonzalez, A., Hooper, D.U., Perrings, C., Venail, P., Narwani, A., Mace, G.M., Tilman, D., Wardle, D.A., Kinzig, A.P., Daily, G.C., Loreau, M., Grace, J.B., Larigauderie, A., Srivastava, D. y Naeem, S., 2012. Biodiversity loss and its impact on humanity. En: Nature, 486(7401), pp.59-67.
Collins, J.A., Jennings, D.T. y Forsute Jr. H.Y., 1996. Effects of cultural practices on the spiders (Araneae) fauna of Lowbush Blueberry fields in Washington County, Maine. En: The Journal of Arachnology, 24, pp.43-57.
Costa, F.G., Pérez-Miles, F., Gudynas, E., Prandi, L. y Capocasale, R.M., 1991. Ecología de los arácnidos criptozoicos, excepto ácaros, de Sierra de las Ánimas (Uruguay). Ordenes y familias. En: Aracnologia, 13/15, pp1-41.
Curtis, D., 1980. Pitfalls in spider community studies (Arachnida, Araneae). En: The Journal of Arachnology, 8, pp.271-280.
Chen, K-C., Tso, I-M., 2004. Spider diversity on Orchid Island, Taiwan: A comparison between habitats receiving different degrees of human disturbance. En: Zoological Studies,43(3), pp.598-611.
Churchill, T.B. y Arthur, J.M., 1999. Measuring Spider Richness: Effects of Different Sampling Methods and Spatial and Temporal Scales. En: Journal of Insect Conservation, 3, pp.287–295.
DINAMA, 2010. IV Informe nacional al convenio sobre la diversidad biológica. Montevideo: DINAMA.
Duelli, P. y Obrist, M.K., 1998. In search of the best correlates for local organismal biodiversity in cultivated areas. En: Biodiversity and Conservation, 7, pp.297-309.
Duelli, P. y Obrist, M.K., 2003. Biodiversity indicators: the choice of values and measures. En: Agriculture, Ecosystems and Environment, 98, pp.87-98.
Duffey, E., 2012. Spider Populations and Their Response to Different Habitat Types. En: Arachnology, 15, pp.213–222
Dufrêne, M. y Legendre, P., 1997. Species assemblages and indicator species: the need for a flexible asymmetrical approach. En: Ecological Monographs, 67, pp.345–366.
Ferretti, N., González, A., Pérez-Miles, F., 2014. Identification of priority areas for conservation in Argentina: quantitative biogeography insights from mygalomorph spiders (Araneae: Mygalomorphae). En: Journal of Insect Conservation, 18, pp.1087-1096.
Fournier, E. y Loreau, M., 1999. Effects of new planted hedges on ground-beetle diversity (Coleoptera, Carabidae) in an agricultural landscape. En: Ecography, 22, pp.87-97.
Gaspar, C., Gaston, K.J. y Borges, P.A.V., 2010. Arthropods as surrogates of diversity at differente scales. En: Biological Conservation, 143, pp.1287-1294.
Gerlach, J., Samways, M. y Pryke, J., 2013. Terrestrial invertebrates as bioindicators: an overview of available taxonomic groups. En: Journal of Insect Conservation, 17, pp.831–850.
Ghione, S., Simó, M., Aisenberg, A. y Costa, F.G., 2013. Allocosa brasiliensis (Araneae, Lycosidae) as a bioindicator of coastal sand dunes in Uruguay. En: Arachnology, 16, pp.94–98.
Hendrickx, F., Maelfait, J-P., Van Wingerden, W., Schweiger, O., Speelmans, M., Aviron, S., Augenstein, I., Billeter, R., Bailey, D., Bukacek,j R., Burel, F., Dieköter, T., Dirksen, J., Herzog, F., Liira, J., Roubalova, M., Vandomme, V. y Bugter, R., 2007. How landscape structure, land-use intensity and habitat diversity affect components of total arthropod diversity in agricultural landscapes. En: Journal of Applied Ecology, 44, pp.340-351.
Holopainen, J. K., 1992. Catch and sex ratio of Carabidae (Coleoptera) in pitfall traps filled with ethylene glycol or water. En: Pedobiologia, 36, pp.257–261.
Hore, U. y Uniyal, V.P., 2008. Diversity and composition of spider assemblages in five vegetation types of the Terai Conservation Area, India. En: The Journal of Arachnology, 36, pp.251-258.
Jud, P. y Schmidt-Entling, M.H., 2008. Fluid type, dilution, and bitter agent influence spider preservation in pitfall traps. En: Entomologia Experimentalis et Applicata, 129, pp.356–359.
Koivula, M.J., 2011. Useful model organisms, indicators, or both? Ground beetles (Coleoptera, Carabidae) reflecting environmental conditions. En: Zookeys, 100, pp.287–317.
Kremen, C., Colwell, R.K., Erwin, T.L., Murphy, D.D., Noss, R.F. y Sanjayan, M.A., 1993. Terrestrial arthropod assemblages: their use in conservation planning. En: Conservation Biology, 7, pp.796–808.
Lange, M., Gossner, M.M. y Weisser, W.W., 2011. Effect of pitfall trap type and diameter on vertebrate by-catches and ground beetle (Coleoptera: Carabidae) and spider (Araneae) sampling. En: Methods in Ecology and Evolution,2, pp.185–190.
Machado, E.O., Laborda, A., Simó, M. y Brescovit, A.D., 2013. Contributions to the taxonomy and distribution of the genus Mesabolivar in southern South America (Araneae: Pholcidae). En: Zootaxa, 3682, pp.401–11.
Machado, E.O., Brescovit, A.D., Candiani, D.F. y Huber, B.A., 2007. Three new species of Mesabolivar (Aranea, Pholcidae) from leaf litter in urban environments in the city of São Paulo, São Paulo, Brazil. En: Iheringia Série Zoologia. 97, pp.168–176.
Matteucci, S. D. y Colma, A., 1982. Metodología para el estudio de la vegetación. Washington: Secretaria General de la Organización de los Estados Americanos. (Serie Biología, Monografía 22).
Moreno, C.E., 2001. Métodos para medir la biodiversidad. Zaragoza: M&T. (Manuales y Tesis SEA, vol. 1).
MVOTMA, 2015. ¿Qué es el SNAP? [En línea]. Montevideo: MVOTMA. [Consulta 16 de junio de 2017]. Disponible en: http://www.mvotma.gub.uy/que-es-snap.html
Naeem, S., Chapin, F.S., Costanza, R., Ehrlich, P.R., Golley, F.B., Hooper, D.U., Lawton, J.H., O.Neill, R.V., Mooney, H.A., Sala, O.E., Symstad, A.J. y Tilman, D., 1999. Biodiversity and ecosystem functioning: maintaining natural life support processes. En: Issues in Ecology, 4, pp.1-12.
Niemi, G.J. y McDonald, M.E., 2004. Application of ecological indicators. En: Annual Reviews in Ecology Evolution and Systematics, 35, pp.89–111.
Niemelä, J., Langor, D. y Spence, JR., 1993. Effects of clear-cut harvesting on boreal ground-beetle assemblages (Coleoptera: Carabidae) in Western Canada. En: Conservation Biology, 7, pp.551-561.
Pekár, S., 2002. Differential effects of formaldehyde concentration and detergent on the catching efficiency of surface active arthropods by pitfall traps. En: Pedobiologia(Jena), 46, pp.539–547.
Pérez-Miles, F., Simó, M., Toscano-Gadea, C. y Useta, G., 1999. La comunidad de Araneae criptozoicas del Cerro de Montevideo, Uruguay: un ambiente rodeado por urbanización. En: Physis, Sección C, 57, pp.73-87.
R Core Team, 2016. R: A language and environment for statistical computing [En linea]. Vienna: R Foundation for Statistical Computing. [Consulta: 8 de marzo de 2017]. Disponible en: https://www.R-project.org/.
Rainio, J. y Niemelä, J., 2003. Ground beetles (Coleoptera: Carabidae) as bioindicators. En: Biodiversity and Conservation, 12, pp.487–506.
Reichardt, H., 1977. A synopsis of the genera of Neotropical Carabidae (Insecta: Coleoptera). En: Quaestiones Entomologicae, 13, pp.346-493.
Ribera, I. y Foster, G., 1997. El uso de artrópodos como indicadores biológicos. En: Boletín S.E.A., 20, pp.265-276.
Rocha, J.R.M. da, Almeida, J.R., Lins, G.A. y Durval, A., 2010. Insects as indicators of environmental changing and pollution: a review of appropriate species and their monitoring. En: Holos Environment, 10, pp.250-262.
Sauberer, N., Zulka, K.P., Abensperg-Traun, M., Berg, H-M., Bieringer, G., Milasowszky, N., Moser, D., Plutzar, C. Pollheimer, M., Storch, C., Tröstl, R., Zechmeister, H. y Grabherr, G., 2004. Surrogate taxa for biodiversity in agricultural landscapes of eastern Austria. En: Biological Conservation, 117, pp.181-190.
Schirmel, J., Lenze, S., Katzmann, D. y Buchholz, S., 2010. Capture efficiency of pitfall traps is highly affected by sampling interval. En: Entomologia Experimentalis et Applicata, 136, pp.206-210.
Schmidt, M.H., Clough, Y., Schulz, W., Westphalen, A. y Tscharntke, T., 2006. Capture efficiency and preservation attributes of different fluids in pitfall traps. En: The Journal of Arachnology, 34, pp.159-162.
Schmidt, M.H., Roschewitz, I., Thies, C. y Tscharntke, T., 2005. Differential effects of landscape and management on diversity and density of ground-dwelling farmland spiders. En: Journal of Applied Ecology, 42, pp.281-287.
Schowalter, T.D., 2006. Insect ecology: an ecosystem approach. New York: Elsevier.
Simó, M., Laborda, A., Jorge, C. y Castro, M., 2011. Las arañas en agroecosistemas, bioindicadores terrestres de calidad ambiental. En: INNOTEC, 6, pp.51-55.
Skvarla, M.J. y Dowling, A.P.G., 2017. A comparison of trapping techniques (Coleoptera: Carabidae, Buprestidae, Cerambycidae, and Curculionoidea excluding Scolytinae). En: Journal of Insect Science, 17(1), pp.1-28.
Thomas, C.F.G. y Marshall, E.J.P., 1999. Arthropod abundance and diversity in differently vegetated margins of arable fileds. En: Agriculture, Ecosystems and Environment, 72, pp.131-144.
Tonelli, M., Verdú, J.R. y Zunino, M.E., 2017. Effects of grazing intensity and the use of veterinary medical products on dung beetle biodiversity in the sub-mountainous landscape of Central Italy. En: PeerJ, 5, pp.e2780.
Vasconcellos-Neto. J., Romero, G.Q., Santos, A.J. y Dippenaar-Schoeman, A.S., 2007. Associations of spiders of the genus Peucetia (Oxyopidae) with plants bearing glandular hairs. En: Biotropica, 39, pp.221–226.
Weeks, R.D. y McIntyre, N.E., 1997. A comparison of live versus kill pitfall trapping techniques using various killing agents. En: Entomologia Experimentalis et Applicata, 82, pp.267–273.
Winder, L, Holland, J.M., Perry, J.N., Woolley, C. y Alexander C. J., 2001. The use of barrier-connected pitfall trapping for sampling predatory beetles and spiders. En: Entomologia Experimentalis et Applicata,98, pp.249–258.
Work, T.T., Buddle, C.M., Korinus, L.M. y Spence, J.R., 2002. Pitfall trap size and capture of three taxa of litter-dwelling arthropods: implications for diversity studies. En: Environmental Entomology, 31(3), pp.438-448.
Downloads
Published
How to Cite
Issue
Section
License
Los autores del manuscrito declaran conocer y aceptar los siguientes términos de responsabilidad:
Haber participado lo suficiente en el trabajo como para hacer pública la responsabilidad por su contenido.
Que el manuscrito representa un trabajo original que no fue publicado ni está siendo considerado por otra revista para su publicación, en parte o en forma íntegra, tanto impresa como electrónica.
Que en caso de ser solicitado, procurará o cooperará en la obtención y suministro de datos sobre los cuales el manuscrito esté basado.
Declara que la información divulgada que pudiera pertenecer a un tercero cuenta con la autorización correspondiente.
Autorización para la publicación y compromiso de cita de primera publicación
Los autores/as conservan los derechos de autor y ceden a la revista INNOTEC / INNOTEC Gestión el derecho de la primera publicación, con el trabajo registrado con la licencia de atribución Creative Commons Reconocimiento-NoComercial 4.0 Internacional. Creative Commons, que permite a terceros utilizar lo publicado siempre que mencionen la autoría del trabajo y a la primera publicación en esta revista sin fines comerciales.
El autor se compromete a realizar la cita completa de la edición institucional de esta primer publicación en las siguientes publicaciones -completas o parciales- efectuadas en cualquier otro medio de divulgación, impreso o electrónico.
Los autores/as pueden realizar otros acuerdos contractuales no comerciales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en esta revista (p. ej., incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en esta revista.
Se permite a los autores/as publicar su trabajo en Internet (por ejemplo en páginas institucionales o personales) antes y durante el proceso de revisión, ya que puede conducir a intercambios productivos y a una mayor y más rápida difusión del trabajo publicado (vea The Effect of Open Access). A su vez los autores/as autorizan al LATU a publicar el trabajo en su repositorio digital.
Los conceptos y opiniones vertidos en los artículos son de responsabilidad de sus autores.
Este obra está bajo una licencia Reconocimiento-NoComercial 4.0 Internacional.