Catalytic hydrotreating of vegetable oils for the production of liquid biofuels

Authors

  • Elisa Volonterio Derivados de la Industria Alimentaria, Departamento de Ciencia y Tecnología de Alimentos, Facultad de Química, Universidad de la República, Montevideo, Uruguay
  • Juan Bussi Laboratorio de Fisicoquímica de Superficies, Departamento de Experimentación y Teoría de la Estructura de la Materia y sus Aplicaciones, Facultad de Química, Universidad de la República, Montevideo, Uruguay
  • Jorge Castiglioni Laboratorio de Fisicoquímica de Superficies, Departamento de Experimentación y Teoría de la Estructura de la Materia y sus Aplicaciones, Facultad de Química, Universidad de la República, Montevideo, Uruguay
  • Ignacio Vieitez Derivados de la Industria Alimentaria, Departamento de Ciencia y Tecnología de Alimentos, Facultad de Química, Universidad de la República, Montevideo, Uruguay
  • Iván Jachmanián Derivados de la Industria Alimentaria, Departamento de Ciencia y Tecnología de Alimentos, Facultad de Química, Universidad de la República, Montevideo, Uruguay

DOI:

https://doi.org/10.26461/14.01

Keywords:

Biofuels, hydrotreating, hydrodeoxygenation, biogasoil

Abstract

It is called «hydrotreating» the process comprising the exposure of a raw material to high temperature and high hydrogen pressure in presence of a convenient catalyst. Such process has gained interest in the feld of the renewable energies because it can be used to convert biomasses from different origin into biofuels. Particularly, if an edible fat or oil is destined to this type of process a blend of parafns and isoparafns suitable for the substitution of fossil diesel fuels can be obtained. Tis type of liquid biofuels has been called «bio-gasoil» (or «greendiesel»), and is a renewable alternative to gasoil with a higher quality than traditional biodiesel. In this work high oleic sunflower oil was processed in a batch reactor at 350 °C and 100 bar H2, using three different catalyst: NiMo/Al2O3, PtO2 and Pd/Al2O3. Afer 4 hs of reaction period yields of 89, 93 y 98 % (respectively) were achieved, determined as hydrocarbon concentration. Product composition suggests that conversion occurred through a complex mechanism involving hydrodeoxigenation, hydrodecarbonilation, hydrodecarboxilation and cracking.

Downloads

Download data is not yet available.

References

Arun, N., Sharma, R. y Dalai, A., 2015. Green diesel synthesis by hydrodeoxygenation of bio-based feedstocks: Strategies for catalyst design and development. En: Renewable and Sustainable Energy Reviews, 48, pp.240-255.

Guo, L., Fan, Y., Bao, X., Shi, G. y Liu, H., 2013. Two-stage surfactant-assisted crystallization for enhancing SAPO-11 acidity to improve n-octane di-branched isomerization. En: Journal of Catalysis, 301, pp.162-173.

Huber, G.H., Iborra, S. y Corma, A., 2006. Synthesis of transportation fuels from biomass:  chemistry, catalysts, and engineering. En: Chemical Reviews, 106, pp.4044-4098.

Hancsók, J., Eller, Z., Polczmann, G. y Varga, Z., 2013. Sustainable production of bioparaffins. En: Chemical Engineering Transactions, 35, pp.1027-1032.

Hancsók, J., Krar, M., Magyar, S., Boda, L., Hollo, A. y Kallo, D., 2007. Investigation of the production of high cetane number bio gas oil from pre-hydrogenated vegetable oils over Pt/HZSM-22/Al2O3. En: Microporous and Mesoporous Materials, 101, pp.148-152.

Immer, JG. y Lamb, HH., 2010. Fed-batch catalytic deoxygenation of free fatty acids. En: Energy & Fuels, 24, pp.5291-5299.

Instituto Uruguayo de Normas Técnicas, 2014. UNIT 1100:2014: Biodiesel (b100). Combustible para uso puro o en mezcla con destilados medios de petróleo - requisitos. Montevideo: UNIT.

Kalnes, T., Marker, T. y Shonnard, D.R, 2007. Green diesel: A second generation biofuel. En: International Journal of Chemical Reactor Engineering, 5, pp.A48.

Kochetkova, D., Blazek, J., Simacek, P., Stas, M. y Beno, Z., 2016. Influence of rapeseed oil hydrotreating on hydrogenation activity of CoMo catalyst. En: Fuel Processing Technology, 142, pp.319–325.

Kovacs, S., Kasza, T., Thernesz, A., Walhne Horvath, I. y Hancsók, J., 2011. Fuel production by hydrotreating of triglycerides on NiMo/Al2O3/F catalyst. En: Chemical Engineering Journal, 176-177, pp.237- 243.

Sari, E., Kimb, M., Salley, S. y Simon, K., 2013. A highly active nanocomposite silica-carbon supported palladium catalyst for decarboxylation of free fatty acids for green diesel production: correlation of activity and catalyst properties. En: Applied Catalysis A: General, 467, pp.261-269.

Studentschnig, A., Schober, S. y Mittelbach, M., 2013. Conversion of crude palm oil into hydrocarbons over commercial raney nickel. En: Energy & Fuels, 27, pp.7480−7484.

Tsuji, T., Ohya, K., Hoshina, T., Hiaki, T., Maeda, K., Kuramochi, H. y Osako, M., 2014. Hydrogen solubility in triolein, and propane solubility in oleic acid for second generation BDF synthesis by use of hydrodeoxygenation reaction. En: Fluid Phase Equilibria, 362, pp.383-388.

Vonortas, A. y Papayannakos, N., 2014. Comparative analysis of biodiesel versus green diesel. En: WIREs Energy and Environment, 3, pp.3-23.

Published

2017-11-13

How to Cite

Volonterio, E., Bussi, J., Castiglioni, J., Vieitez, I., & Jachmanián, I. (2017). Catalytic hydrotreating of vegetable oils for the production of liquid biofuels. INNOTEC, (14 jul-dic), 37–43. https://doi.org/10.26461/14.01

Issue

Section

Articles