Optimization of a primary method for the determination of creatinine in human serum by GC-IDMS

Authors

  • Ana Inés Silva Departamento de Metrología Química, Laboratorio Tecnológico del Uruguay. Montevideo, Uruguay http://orcid.org/0000-0003-1572-5736
  • Florencia Almirón Departamento de Metrología Química, Laboratorio Tecnológico del Uruguay. Montevideo, Uruguay http://orcid.org/0000-0003-0585-0939
  • Elizabeth Ferreira Departamento de Metrología Química, Laboratorio Tecnológico del Uruguay. Montevideo, Uruguay http://orcid.org/0000-0002-4105-1731
  • Mariela Pistón Grupo de Análisis de Elementos Traza y Desarrollo de Estrategias Simples para Preparación de Muestras (GATPREM), Área Química Analítica, Departamento Estrella Campos, Facultad de Química, Universidad de la República, Montevideo, Uruguay http://orcid.org/0000-0002-6762-5852

DOI:

https://doi.org/10.26461/17.06

Keywords:

metrology, primary methods of measurement, IDMS, optimization

Abstract

Primary methods represent the highest hierarchical measurement level as they allow the implementation of traceability to the International System of Units. The aim of this work was the optimization of a primary method for the determination of creatinine in human serum by isotope dilution gas chromatography mass spectrometry (GC-IDMS) which is an adaptation of a reference method published in the Joint Committee for Traceability in Laboratory Medicine (JCTLM - BIPM) database. The isotopic equilibration and derivatization steps were optimized through a 23 experimental design and a one-way analysis of variance (ANOVA). The monitored output variables were the creatinine peak signal, the derivatization efficiency, the relative derivatization efficiency and bias. The optimized method shows higher efficiency and simplicity compared to the original method as well as a bias that remains fit for purpose. Once validated is intended to be used for the development of quality assurance tools for routine analysis of clinical laboratories.

Downloads

Download data is not yet available.

References

Burke, D. y Mackay, L., 2008. Complete equation for the measurement of organic molecules using stable isotope labeled internal standards, exact matching, and mass spectrometry. En: Analytical Chemistry, 80(13), pp.5071-5078.

Cardinael, P., Casabianca, H., Peulon‐Agasse, V. y Berthod, A., 2015. Sample derivatization in separation science. En: Anderson, J., Berthod, A., Pino, V. y Stalcup, A., eds. Analytical separation science. s.l.: Wiley‐VCH Verlag GmbH & Co. pp. 1725-1756.

Costa Ferreira, S.L., 2015. Introdução às técnicas de planejamento de experimentos. Salvador: Vento Leste. ISBN: 978-85-8140-067-9.

De Bievre, P. y Peiser, H.S., 1997. Basic equations and uncertainties in isotope dilution-mass spectrometry for traceability to SI of values obtained by this primary method. En: Fresenius Journal of Analytical Chemistry, 359(7-8), pp.523-525.

Fernández-Fernández, M., González-Antuña, A., Rodríguez-González, P., Añón Álvarez, M.E., Álvarez, F.V. y García Alonso, J.I., 2014. Development of an isotope dilution GC-MS procedure for the routine determination of creatinine in complex serum samples. En: Clinica Chimica Acta, 431, pp.96-102.

JCGM, 2012. JCGM 200:2012. Vocabulario Internacional de Metrología Conceptos fundamentales y generales, y términos asociados (VIM). [s.l.]: JCGM.

Kessler, A., 2016. Mass spectrometry – a key technique for traceability in clinical chemistry. En: Trends in Analytical Chemistry, 84(B), pp.74-79.

King, B., 2005. The practical realization of the traceability of chemical measurement standards. En: De Bièvre, P. y Günzler, H., eds. Traceability in chemical measurements. Berlin: Springer-Verlag. pp.85-92.

Myers, G.L., Miller, W.G., Coresh, J., Fleming, J., Greenberg, N., Greene, T., Hostetter, T., Levey, A.S., Panteghini, M., Welch, M., Eckfeldt, J.H. y National Kidney Disease Education Program Laboratory Working Group, 2006. Recommendations for improving serum creatinine measurement: A report from the Laboratory Working Group of the National Kidney Disease Education Program. En: Clinical Chemistry, 52(1), pp.5-18.

Poole, C., 2013. Alkylsilyl derivatives for gas chromatography. En: Journal of Chromatography A, 1296, pp.2-14.

Richter, W., 1997. Primary methods of measurement in chemical analysis. En: Accreditation and Quality Assurance, 2(8), pp.354-359.

Siekmann, L., 1985. Determination of creatinine in human serum by isotope dilution-mass spectrometry. En: Journal of Clinical Chemistry and Clinical Biochemistry, 23(3), pp.137-144.

Thienpont, L., Van Uytfanghe, K. y De Leenheer, A., 2002. Reference measurement systems in clinical chemistry. En: Clinica Chimica Acta , 323(1-2), pp.73-87.

Thompson, M. y Ellison, S.L.R., 2005. A review of interference effects and their correction in chemical analysis with special reference to uncertainty. En: Accreditation and Quality Assurance, 10(3), pp.82-97.

Published

2018-12-19

How to Cite

Silva, A. I., Almirón, F., Ferreira, E., & Pistón, M. (2018). Optimization of a primary method for the determination of creatinine in human serum by GC-IDMS. INNOTEC, (17 ene-jun), 102–116. https://doi.org/10.26461/17.06

Issue

Section

Articles