Development of an analytical methodology for the determination of Cd, Pb and As in fruits and vegetables as an alternative to standard methods of analysis

Authors

  • Florencia Tissot Ramos Grupo de Análisis de Elementos traza y desarrollo de estrategias simples para preparación de muestras (GATPREM). Área Química Analítica, Departamento Estrella Campos, Facultad de Química, Universidad de la República. Montevideo, Uruguay. http://orcid.org/0000-0002-8186-3347
  • Mónica Cecilia Pereira Berrutti Grupo de Análisis de Elementos traza y desarrollo de estrategias siMples para preparación de muestras (GATPREM). Área QuíMica Analítica, Departamento Estrella Campos, Facultad de Química, Universidad de la República, Montevideo, Uruguay https://orcid.org/0000-0001-9801-6577
  • Mariela Mónica Pistón Pedreira Grupo de Análisis de Elementos traza y desarrollo de estrategias siMples para preparación de muestras (GATPREM). Área QuíMica Analítica, Departamento Estrella Campos, Facultad de Química, Universidad de la República, Montevideo, Uruguay https://orcid.org/0000-0002-6762-5852
  • Facundo Ibañez Agroalimentos INIA, Estación Experimental Las Brujas, Instituto Nacional de Investigación Agropecuaria. Canelones, Uruguay. https://orcid.org/0000-0001-7893-5568
  • Sebastián Dini Agroalimentos INIA, Estación Experimental Las Brujas, Instituto Nacional de Investigación Agropecuaria. Canelones, Uruguay. https://orcid.org/0000-0001-8519-2985

DOI:

https://doi.org/10.26461/19.01

Keywords:

food safety, vegetables, lead, cadmium, arsenic.

Abstract

Food safety encompasses different actions in order to guarantee maximum security. Almost all of the fruits and some vegetables can be consumed raw, but they can contain contaminants that reach the product at any point, from its cultivation, harvest, and even in the processing chain, that takes it to the final consumer.

In order to monitor inorganic pollutants, arsenic (As), cadmium (Cd) and lead (Pb) quickly, reliably and in accordance with the principles of Green Chemistry, an analytical method was developed and validated for simultaneous extraction of these elements using a microwave-assisted procedure, in a single step and using diluted acid. The validated method was applied with four products: carrot, lettuce, apple and tomato. The performance parameters of this methodology indicated that it was adequate to monitor the referred foods taking as reference the current regulations and all the samples analyzed met the established criteria. These kind of studies applied to food safety are relevant and in this case, an analytical platform is now available for productive sector and national control agencies.

Downloads

Download data is not yet available.

References

Allende, A. y Monaghan, J., 2015. Irrigation water quality for leafy crops: a perspective of risks and potential solutions. En: International Journal of Environmental Research and Public Health, 12 (7), pp.7457-7477.

AOAC International, 2016. Official Methods of Analysis of AOAC International. 20va ed. Maryland: AOAC. Official Method 986.15, first action 1986-final action 1988.

Burlo, F., Guijarro, I., Barrachina, A. y Valero, D., 1999. Arsenic species: Effects on and accumulation by tomato plants. En: Journal of Agricultural and Food Chemistry, 47, pp.1247-1253.

Islam, M.S., Ahmed, M.K., Habibullah-Al-Mamun, M., Raknuzzaman, M., Ali, M.M. y Eaton, D.W, 2016. Health risk assessment due to heavy metal exposure from commonly consumed fish and vegetables. En: Environment Systems & Decisions, (3), pp.253-265.

La Gra, J., Katinoja, L. y Apízar K., 2016. Metodología de evaluación de cadenas agroalimentarias para la identificación de problemas y proyectos [En línea]. San José: Instituto Interamericano de Cooperación para la Agricultura. [Consulta: 26 de agosto de 2019]. Disponible en: http://repiica.iica.int/docs/B4231e/B4231e.pdf

Lasat, M., 2000. The use of plants for the removal of toxic metal from contaminated soil [En línea]. Pensilvania: American Association for the Advancement of Science, Environmental Science and Engineering Fellow. [Consulta: 22 de agosto de 2019]. Disponible en: https://nepis.epa.gov/Exe/ZyPDF.cgi/9100FZE1.PDF?Dockey = 9100FZE1.PDF

Magnusson, B. y Örnemark, U., 2014. Eurachem guide: the fitness for purpose of analytical methods – a laboratory guide to method validation and related topics. 2a ed. Torino: Eurachem. ISBN: 978-91-87461-59-0

Mañay, N., Goso, C., Pistón, M., Fernández-Turiel, J.L., García-Vallés, M., Rejas, M. y Guerequiz, R., 2013. Groundwater arsenic content in Raigón Aquifer system (San José, Uruguay). En: Revista de la Sociedad Uruguaya de Geología, 18, pp.20-38.

Mañay, N., Pistón, M., Cáceres, M., Pizzorno, P. y Bühl, V. 2019. An overview of environmental arsenic issues and exposure risks in Uruguay. En: Science of the total Environment, 686, pp.590-598.

Mengel, K., Kirkby E.A., Kosegarten H. y Appel T., 2001. Principles of plant nutrition. 5a. ed. Dordrecht: Kluwer Academic Publishers. ISBN: - 94- 010- 1009- 2.

MERCOSUR, 2011. Reglamento Técnico Mercosur MERCOSUR/GMC/RES. Nº/11 [En línea]. Asunción: MERCOSUR. [Consulta: 22 de agosto de 2019]. Disponible en: http://www.puntofocal.gov.ar/doc/r_gmc_12-11.pdf.

Mikheev I.V., Karpukhina E.A., Usol’tseva L.O., Samarina T.O., Volkov D.S. y Proskurnin M.A., 2017. Application of microwave plasma atomic emission spectrometry and hydride generation for determination of arsenic and selenium in mineral water. En: Inorganic Materials, 53(14), pp.1422–1426.

Nobrega, J.A, Trevizan, L.C., Araujo, G.C.L. y Nogueira, A.R.A., 2002. Focused microwave assisted strategies for sample preparation. A review. En: Spectrochimica Acta Part B, 57, pp.1855-1876.

Nziguheba, G. y Smolders, E., 2008. Inputs of trace elements in agricultural soils via phosphate fertilizers in European countries. En: Science of The Total Environment, (1), pp.53-57.

Rehman, Z., Khan, S., Qin, K., Brusseau, M., Shah, M. y Din, I., 2016. Quantification of inorganic arsenic exposure and cancer risk via consumption of vegetables in southern selected districts of Pakistan. En: Science of The Total Environment, 550, pp.321-329.

Rehman, Z., Khan, S., Brusseau, M. y Shah, M., 2017. Lead and cadmium contamination and exposure risk assessment via consumption of vegetables grown in agricultural soils of five-selected regions of Pakistan. En: Chemosphere, 168, pp.1589-1596.

Rivera C.A. y Rodríguez M.R., 2010. Uso de la ecuación de Horwitz en laboratorios de ensayo NMX-EC-17025-IMNC-2006 [En línea]. En: CENAM: Simposio de Metrología 2010. Santiago de Querétaro, México (27-29 de octubre de 2010).

Santiago de Querétaro: CENAM. [Consulta: 6 de setiembre de 2019]. Disponible en: https://www.cenam.mx/sm2010/info/pviernes/sm2010-vp03c.pdf

Tanabe, C.K., Hopfer H., Gilleland G., Liba A., Ebelerab S. E. y Nelson J., 2016. Total arsenic analysis in Californian wines with hydride generation – microwave plasma – atomic emission spectroscopy (HG-MP-AES). En: Journal of Analytical Atomic Spectrometry, 31, pp.1223-1227.

Welz, B. y Sperling, M., 1999. Atomic absortion spectrometry. 3a ed. Berlín: Wiley- VCH. ISBN 3-257-28571-7.

Williams, C., Amais, R., Fontoura, B., Jones, B., Nobrega, J. y Donati, G., 2019. Recent developments in microwave-induced plasma optical emission spectrometry and applications of a commercial Hammer-cavity instrument. En: Trends in Analytical Chemistry, 116, pp.151-157.

World Health Organization, 2018. Arsénico [En línea]. Ginebra: WHO. [Consulta: 26 de agosto de 2019]. Disponible en: https://www.who.int/es/news-room/fact-sheets/detail/arsenic

Published

2019-11-28

How to Cite

Tissot Ramos, F., Pereira Berrutti, M. C., Pistón Pedreira, M. M., Ibañez, F., & Dini, S. (2019). Development of an analytical methodology for the determination of Cd, Pb and As in fruits and vegetables as an alternative to standard methods of analysis. INNOTEC, (19 ene-jun), 52–63. https://doi.org/10.26461/19.01

Issue

Section

Articles

Most read articles by the same author(s)