Low-cost potentiometric and conductometric methods:

a review

Authors

  • Javier Ernesto Vilasó Cadre Instituto de Metalurgia, Universidad Autónoma de San Luis Potosí, México. https://orcid.org/0000-0001-5172-7136
  • Javier Gonzalo González Fontanet Departamento de Ingeniería Electrónica, Universidad Técnica Federico Santa María, Chile. https://orcid.org/0000-0003-0835-4914
  • Juan Jesús Piña Departamento de Química Analítica, Facultad de Química, Universidad de La Habana, Cuba. https://orcid.org/0000-0002-1613-8333
  • María de los Ángeles Arada Pérez Departamento de Química, Facultad de Ciencias Naturales y Exactas, Universidad de Oriente, Cuba. https://orcid.org/0000-0001-9262-2066

DOI:

https://doi.org/10.26461/25.01

Keywords:

potentiometry, conductometry, non-commercial

Abstract

Potentiometry and conductometry are the most common electroanalytical methods in laboratories. One of the advantages of electrochemical methods is the possibility to construct low-cost, non-commercial instrumentation since the physical interaction and the physico-chemical response of the system are electrical in nature. Low-cost, non-commercial instrumentation provides access to methods for both research and teaching; it also allows adaptation to experimental designs or processes with specific requirements such as real-time monitoring. Several authors have worked on the development of low-cost potentiometric and conductometric instrumentation, implementing systems that contemplate from the electrodes to the measuring instrument. In this work, a review of low-cost, non-commercial potentiometric and conductometric methods is presented, starting from quite simple instrumentation to more advanced electronic circuits. The works discussed demonstrates that it is possible to construct potentiometric and conductometric instrumentation with analytical results within the requirements for chemical analysis.

Downloads

Download data is not yet available.

References

Arada Pérez, M.A., 2020. Sensores potenciométricos. Ejemplos prácticos. Santiago de Cuba: Ediciones UO. ISBN: 978-959-207-672-3.

ASLK PRO Team, 2016. Analog System Lab Kit PRO University Kit [En línea]. Texas: Texas Instruments Incorporated. [Consulta: febrero de 2023]. Disponible en: http://www.ti.com/tool/aslkpro

Baeza, A., 2003a. Microbureta a microescala total para titulometría. En: Rev. Chil. Educ. Cient., 1(2), pp. 4-7.

Baeza, A., 2003b. Titulaciones ácido-base potenciométricas a microescala total con microsensores de pH y de referencia de bajo costo. En: Rev. Chil. Educ. Cient., 1(2), pp. 16-19.

Bakker, E. y Pretsch, E., 2005. Potentiometric sensors for trace-level analysis. En: Trends Anal. Chem., 24(3), pp. 199-207. DOI: https://doi.org/10.1016/j.trac.2005.01.003

Bhateria, R. y Jain, D., 2016. Water quality assessment of lake water: a review. En: Sustain. Water Resour. Manag., 2, pp. 61-173. DOI: https://doi.org/10.1007/s40899-015-0014-7

Bieg, C.; Fuchsberger, K. y Stelzle, M., 2017. Introduction to polymer-based solid-contact ion-selective electrodes—basic concepts, practical considerations, and current research topics. En: Anal. Bioanal. Chem., 409, pp. 45–61. DOI: https://doi.org/10.1007/s00216-016-9945-6

Calero Cáceres, W. y Bonilla, P., 2011. Desarrollo de un método micropotenciométrico de bajo costo para la determinación de acidez valorable. En: Química Central, 2(1), pp. 3-12.

CCS Team, 2016. Code Composer Studio (CCS) Integrated Development Environment (IDE) [En línea]. Texas: Texas Instruments Incorporated. [Consulta: febrero de 2023]. Disponible en: http://www.ti.com/tool/ccstudio

Cerna-Cueva, A. F.; Aguirre-Escalante, C.; Wong-Figueroa, B. L.; Tello-Cornejo, J. L. y Pinchi-Ramírez, W., 2022. Calidad de agua para riego en la cuenca Huallaga, Perú. En: Sci. Agric., 13(3), pp. 239-248. DOI: https://doi.org/10.17268/sci.agropecu.2022.022

Corredor León, B. y Prieto Sáenz, A., 2019. Diseño y construcción de un dispositivo para determinar las cualidades del agua. En: Letras ConCiencia TecnoLógica, 15, pp. 8-12. DOI: https://doi.org/10.55411/26652544.154

Covington, A. K., 1979. Ion-selective electrode methodology. Volume 1. Florida: CRC Press. ISBN: 1315894785

Das, R.; Samal, N. R.; Roy, P. K. y Mitra, D., 2006. Role of electrical conductivity as an indicator of pollution in shallow lakes. En: Asian J. Water Environ. Pollut., 3(1), pp. 143-146.

de Souza Antas, F. P.; da Silva Dias, N.; Moreira de Oliveira, A.; Nogueira de Sousa Neto, O.; dos Santos Fernandes, C.; de Oliveira Miranda, N.; de Sousa Gurgel, G. C.; de Sousa Junior, F. S.; de Oliveira Lima, A. y Ferreira Neto, M., 2018. Hydrochemical characterization of water resources from reverse osmosis desalination plants. En: J. Agric. Sci., 10(12), pp. 445-457. DOI: https://doi.org/10.5539/jas.v10n12p445

Elbalkiny, H. T. y Samir, A., 2022. Green potentiometric electrode for determination of salbutamol in biological samples. En: Anal. Biochem., 659, 114949. DOI: https://doi.org/10.1016/j.ab.2022.114949

García Torres, A., 1991. Medidor de pH de bajo costo. En: Educ. Quím., 2(2), pp. 81-85. DOI: https://doi.org/10.22201/fq.18708404e.1991.2.66957

Hein, R.; Beer, P. D. y Davis, J. J., 2020. Electrochemical anion sensing: supramolecular approaches. En: Chem. Rev., 120(3), pp. 1888-1935. DOI: https://doi.org/10.1021/acs.chemrev.9b00624

Isildak, Ö. y Özbek, O., 2021. Application of potentiometric sensors in real samples. En: Crit. Rev. Anal. Chem., 51(3), pp. 218-231. DOI: https://doi.org/10.1080/10408347.2019.1711013

Jin, H.; Qin, Y.; Pan, S.; Alam, A. U.; Dong, S.; Ghosh, R. y Deen, M. J., 2018. Open-source low-cost wireless potentiometric instrument for pH determination experiments. En: J. Chem. Educ., 95(2), pp. 326-330. DOI: https://doi.org/10.1021/acs.jchemed.7b00479

Karimi-Maleh, H.; Orooji, Y.; Karimi, F.; Alizadeh, M.; Baghayeri, M.; Rouhi, J.; Tajik, S.; Beitollahi, H.; Agarwal, S.; Gupta, V. K.; Rajendran, S.; Ayati, A.; Fu, Li.; Sanati, A. L.; Tanhaei, B.; Sen, F.; Shabani-nooshabadi, M.; Asrami, P. N. y Al-Othman, A., 2021. A critical review on the use of potentiometric based biosensors for biomarkers detection. En: Biosens. Bioelectron., 184, 113252. DOI: https://doi.org/10.1016/j.bios.2021.113252

López-Cerdeña, K.; García-Mendoza, A.; de Santiago, A. y Baeza, A., 2005. Química analítica a microescala total: microconductimetria. En: Rev. Cub. de Quím., 17, pp. 346.

McNaught, A. D. y Wilkinson A., eds., 1997. IUPAC compendium of chemical terminology. Oxford: Blackwell Scientific Publications. ISBN 0-9678550-9-8. DOI: https://doi.org/10.1351/goldbook

Mikhelson, K. N., 2013. Ion-selective electrodes. Berlín: Springer Dordrecht. ISBN: 978-3-642-36886-8. DOI: https://doi.org/10.1007/978-3-642-36886-8

Nasser, H. N. y Hamoudeh, D. H., 2020. Manufacture of an electrical conductor cell of chromium 316 and its analytical applications. En: Chemisty Research Journal, 5(1), pp. 126-136.

Néher-Neumann, E., 2009. Advanced potentiometry. Potentiometric titrations and their systematic errors. Berlín: Springer Dordrecht. ISBN: 978-1-4020-9525-2. DOI: https://doi.org/10.1007/978-1-4020-9525-2

Obaya Valdivia, A. E.; Montaño-Osorio, C. y Vargas-Rodríguez, Y. M., 2019. Conductometric Titration of Metformin Hydrochloride: Simulation and Experimentation. En: J. Chem. Chem. Eng., 13, pp. 105-111. DOI: https://doi.org/10.17265/1934-7375/2019.03.003

Ortega-Hernández, N.; Ortega-Romero, M.; Medeiros-Domingo, M.; Barbier, O.C. y Rojas-López, M., 2022. Detection of biomarkers associated with acute kidney injury by a gold nanoparticle based colloidal nano-immunosensor by fourier-transform infrared spectroscopy with principal component analysis. En: Anal. Lett., 55(15), pp. 2370-2381. DOI: https://doi.org/10.1080/00032719.2022.2053982

Ozer, T.; Agir, I. y Henry, C. S., 2022. Rapid prototyping of ion-selective electrodes using a low-cost 3D printed internet-of-things (IoT) controlled robot. En: Talanta, 247, 123544. DOI: https://doi.org/10.1016/j.talanta.2022.123544

Papadopoulos, N. J. y Jannakoudakis, A., 2016. A chemical instrumentation course on microcontrollers and op amps. Construction of a pH meter. En: J. Chem. Educ., 93(7), pp. 1323-1325. DOI: https://doi.org/10.1021/acs.jchemed.5b00743

Pasierb, P. y Rekas, M., 2009. Solid-state potentiometric gas sensors—current status and future trends. En: J. Solid State Electrochem., 13, pp. 3-25. DOI: https://doi.org/10.1007/s10008-008-0556-9

Pincus, M. R.; Lifshitz, M. S. y Bock, J. L., 2021. Analysis: principles of instrumentation. En: McPherson, Richard y Pincus, Matthew. Henry's clinical diagnosis and management by laboratory methods. Amsterdam: Elsevier. pp. 35-59. ISBN: 9780323755085

Rajendran, A. y Neelamegam, P., 2004. Design and development of microcontroller-based conductivity measurement system. En: Indian J. Pure Appl. Phys., 42, pp. 182-188.

Rusydi, A. F., 2018. Correlation between conductivity and total dissolved solid in various type of water: A review. En: IOP Conf. Ser.: Earth Environ. Sci., 118, 012019. DOI: https://doi.org/10.1088/1755-1315/118/1/012019

Sarabia Meléndez, I. F.; Cisneros Almazán, R.; Aceves De Alba, J.; Martín Durán García, H. M. y Castro Larragoitia, J., 2011. Calidad del agua de riego en suelos agrícolas y cultivos del Valle de San Luis Potosí, México. En: Rev. Int. Contam. Ambient, 27(2), pp. 103-113.

Shah, N.; Arain, M. B. y Soylak, M., 2020. Historical background: milestones in the field of development of analytical instrumentation. En: New Generation Green Solvents for Separation and Preconcentration of Organic and Inorganic Species. Amsterdam: Elsevier, pp. 45-73. ISBN: 9780128185698. DOI: https://doi.org/10.1016/B978-0-12-818569-8.00002-4

Silva, R.; Zhao, K.; Ding, R.; Chan, W. P.; Yang, M.; Yip, J. S. Q. y Lisak, G., 2022. Ion-selective membrane modified microfluidic paper-based solution sampling substrates for potentiometric heavy metal detection. En: Analyst, 147(20), pp. 4500-4509. DOI: https://doi.org/10.1039/D2AN01108E

Skoog, D. A.; Holler, F. J. y Crouch, S. R., 2017. Principles of Instrumental Analysis. 7ma Ed. Boston: Cengage Learning. ISBN: 978-1-305-57721-3.

Thirumalini, S. y Joseph, K., 2009. Correlation between electrical conductivity and total dissolved solids in natural waters. En: Malaysian J. Sci., 28(1), pp. 55-61. DOI: https://doi.org/10.22452/mjs.vol28no1.7

TINA Team, 2016. TINA-TI SPICE-Based Analog Simulation Program [En línea]. Texas: Texas Instruments Incorporated. [Consulta: febrero de 2023]. Disponible en: http://www.ti.com/tool/tina-ti

U.S. Geological Survey, 2019. Chapter A6.3. Specific Conductance. En: U.S. Geological Survey. U.S. Geological Survey techniques and methods. Reston: USGS. ISSN: 2328-7055. DOI: https://doi.org/10.3133/tm9A6.3

Wadie, M.; Marzouk, H. M.; Rezk, M. R.; Abdel-Moety, E. M. y Tantawy, M. A., 2022. A sensing platform of molecular imprinted polymer-based polyaniline/carbon paste electrodes for simultaneous potentiometric determination of alfuzosin and solifenacin in binary co-formulation and spiked plasma. En: Anal. Chim. Acta, 1200, 339599. DOI: https://doi.org/10.1016/j.aca.2022.339599

Wang, C.; Qi, L. y Liang, R., 2021. A molecularly imprinted polymer-based potentiometric sensor based on covalent recognition for the determination of dopamine. En: Anal. Methods, 13(5), pp. 620-625. DOI: https://doi.org/10.1039/D0AY02100H

Wurm, G. E.; Urquijo, R. R. y Marinelli, M.J., 2019. Monitoreo en tiempo real de conductividad eléctrica en cultivos hidropónicos. En: 48JAIIO – CAI, pp. 96-103. ISSN: 2525-0949.

Zambrano Sánchez, N.; Camelo Quintero, E.; Méndez González, A. y Valderrama Lugo, Y., 2019. Diseño e implementación de un instrumento electrónico de medida de pH para terreno agrícola. En: Revista Investigación e Innovación en Ingenierías, 7(1), pp. 72-94. DOI: https://doi.org/10.17081/invinno.7.1.3042

Published

2023-02-28

How to Cite

Vilasó Cadre, J. E., González Fontanet, J. G., Piña, J. J., & Arada Pérez, M. de los Ángeles. (2023). Low-cost potentiometric and conductometric methods:: a review. INNOTEC, (25 ene-jun), e626. https://doi.org/10.26461/25.01

Issue

Section

Reviews