Novas metodologias para a análise de microcistinas em peixes

Estudo de Astraloheros Facetus expostos in vitro

Autores

  • Natalia Badagian Baharian Área Bioquímica, Departamento de Biociencias, Facultad de Química, Universidad de la República, Uruguay https://orcid.org/0000-0001-7313-8981
  • Maite Letamendia Área Acuicultura y Patología de Organismos Acuáticos, Facultad de Veterinaria, Universidad de la República, Uruguay https://orcid.org/0000-0003-0049-2116
  • Macarena Pírez Área Inmunología, Departamento de Biociencias, Facultad de Química, Universidad de la República, Uruguay https://orcid.org/0000-0001-9198-6693
  • Daniel Carnevia Área Acuicultura y Patología de Organismos Acuáticos, Facultad de Veterinaria, Universidad de la República, Uruguay https://orcid.org/0000-0001-8069-4054
  • Beatriz Brena Área Bioquímica, Departamento de Biociencias, Facultad de Química, Universidad de la República, Uruguay https://orcid.org/0000-0002-8056-7167

DOI:

https://doi.org/10.26461/20.03

Palavras-chave:

cianobatérias, ciantoxinas, peixes, imunoensaios

Resumo

A alta incidência de florações de cianobactérias produtoras de microcistinas no país e na região representa um risco muito elevado para humanos e animais. Para avaliar o impacto e a presença de microcistinas (MCs) em animais, é importante dispor de métodos simples e de baixo custo. Como primeira aproximação a esses objetivos em peixes, Astraloheros facetus (Castañetas), expostos a uma floração de Microcystis spp, contendo microcistinas (60 e 600 µgMCs/L), foram estudados em um bioensaio subcrônico (18 dias). Embora não houve mortalidade, a histopatologia mostrou alteração tipo infiltração gordurosa no fígado, mais relevante em peixes expostos à maior concentração. Para a análise de microcistinas em tecidos, dois métodos imunoquímicos sensíveis, recentemente desenvolvidos localmente, baseados em um anticorpo de chama recombinante altamente específico (nanobody) foram otimizados: ELISA e MALDI-TOF quantitativo, usando partículas magnéticas funcionalizadas.  A excelente correlação ELISA / MALDI-TOF (rSpearman = 0,988, p < 10-7) destaca o potencial desse ELISA como uma ferramenta simples e econômica, para minimizar as amostras a serem analisadas por métodos de referência. As concentrações de MCs no tecido de Castañetas foram relevantes, de acordo com bioensaios em outras espécies e peixes da natureza. Isso destaca a importância da análise de MCs em peixes para consumo.

Downloads

Não há dados estatísticos.

Biografia do Autor

Natalia Badagian Baharian, Área Bioquímica, Departamento de Biociencias, Facultad de Química, Universidad de la República, Uruguay

Mi formación de grado es Química con orientación en Medio Ambiente y Agrícola de Facultad de Química, Udelar. Actualmente estoy realizando mi tesis de Doctorado  en el Área de Bioquímica e Inmunología, Facultad de Química que busca optimizar métodos de screening de microcistinas en pescados, facilitando la determinación del impacto de las toxinas en ellos y estudios de concentración de estas toxinas.  Resultados de este trabajo han sido presentados en formato poster en Congreso Nacional de Biociencias y ENAQUI (2017 y 2019); en formato de presentación oral en I° Taller de trabajo sobre C.decemmaculatus como modelo experimental- Luján (2017) y VIII Taller de cianobacterias toxigénicas- Salto Grande (2019).

 

Referências

Acuña, S., Baxab, D., Lehmanc, P., Teh, F.C., Deng, D.F. y Tehf, S., 2019. Determining the exposure pathway and impacts of Microcystis on Threadfin shad, Dorosoma petenense, in San Francisco estuary. En:Environmental Toxicology, 39(4), pp.787-798. DOI: 10.1002/etc.4659.

Adamovský, O., Kopp, R., Hilscherová, K., Babica, P., Palíková, M., Pašková, V., Navrátil, S., Maršálek, B. y Bláha, L., 2007. Microcystin kinetics (bioaccumulation and elimination) and biochemical responses in common carp (Cyprinus Carpio )and silver carp (Hypophthalmichthys molitrix) Exposed to Toxic Cyanobacterial Blooms. En:Environmental Toxicology and Chemistry,26, pp.2687-2693. DOI: 10.1897/07-213.1.

American Public Health Association, American Water Works Association y Water Environment Federation, 2005.Standard methods for the examination of water and wastewater.21a ed. Washington: APHA. Standard Method 10200 H, aprobado 1994.

Aubriot, L., Bonilla, S. y Falkner, G., 2011. Adaptive phosphate uptake behaviour of phytoplankton to environmental phosphate fluctuations. En: FEMS Microbiology Ecology,77(1), pp.1–16. DOI: 10.1111/j.1574-6941.2011.01078.x.

Bonilla, S., Haakonsson, S., Somma, A., Gravier, A., Britos, A., Vidal, L., De León, L., Brena, B.M., Pírez, M., Piccini, C., Martínez de la Escalera, G., Chalar, G., González-Piana, M., Martigani, F. y Aubriot, L., 2015. Cianobacterias y cianotoxinas en ecosistemas límnicos de Uruguay. En: INNOTEC, 10, pp.9-22.

Butler, N., Carlisle, J. y Linville, R., 2012. Toxicological summary and suggested action levels to reduce potential adverse health effects of six cyanotoxins. California: Office of Environmental Health Hazard Assessment, California Environmental Protection Agency.

Cazenave, J., Wunderlin, D.A., Bistoni, M.A., Amé, M.V., Krause, E., Pflugmacher, S. y Wiegand, C., 2005. Uptake, tissue distribution and accumulation of micro-cystin-RR in Corydoras paleatus, Jenynsia multidentata and Odontesthes bonariensis: A field and laboratory study. En: Aquatic Toxicology, 75(2), pp.178-190.

Cazenave, J., Wunderlin, D.A., Bistoni, M.A., Amé, M.V., Krause, E., Pflugmacher, S. y Wiegand, C., 2005. Uptake, tissue distribution and accumulation of micro-cystin-RR in Corydoras paleatus, Jenynsia multidentata and Odontesthes bonariensis: A field and laboratory study. En: Aquatic Toxicology, 75(2), pp.178-190.

Chalar, G., 2009. The use of phytoplankton patterns of diversity for algal bloom management. En: Limnologica, 39(3), pp.200-208.

Chorus, I. y Bartram, J., 1999. Toxic cyanobacteria in water. a guide to public health significance, monitoring and managment. Londres: E & FN Spon/Chapman and Halled.

Chorus, I., Falconer, I.R., Salas, H.J. y Bartram, J., 2000. Health caused by fresh water cyanobacteria in recreational water. En: Journal of Toxicology and Environmental Health, 3, pp.323–347.

Dörr, F.A., Pinto, E., Soares, R.M., Feliciano de Oliveira y Azevedo, S.M., 2010. Microcystins in South American aquatic ecosystems: Occurrence, toxicity and toxicological assays. En: Toxicon, 56, pp.1247-1256.

Dyble, J., Gossiaux, D., Landrum, P., Kashian, D.R. y Pothoven, S., 2011. A kinetic study of accumulation and elimination of microcystin-lr in yellow perch (perca flavescens) tissue and implications for human fish consumption. En: Marine Drugs, 9, pp.2553-2571.

Flores, N.M., Miller, T.R. y Stockwell, J.D., 2018. A global analysis of the relationship between concentrations of microcystins in water and fish. En: Frontiers of Marine Science, 5(30). DOI: 10.3389/fmars.2018.00030.

Font-Iribarne, E., 2016. Cianotoxinas en abrevaderos: peligrosidad y efectos negativos para el Ganado. Montevideo: Facultad de Ciencias. (Tesis de Maestría).

Geis-Asteggiante, L., Lehotay, S.J., Fortis, L.L., Paoli, G., Wijey, C. y Heinzen, H., 2011. Development and validation of a rapid method for microcystins in fish and comparing LC-MS/MS results with ELISA. En: Analythical and Bioanalythical Chemistry, 401, pp.2617–2630.

González-Piana, M., Fabian, D., Delbene, L. y Chalar, G., 2011. Toxics blooms of Microcystis aeruginosa in three Río Negro reservoirs, Uruguay. En: Harmful Algae News, 43, pp.16-17.

González-Piana, M., Fabián, D., Piccardo, A. y Chalar, G., 2017. Dynamics of total microcystin lr concentration in three subtropical hydroelectric generation reservoirs in Uruguay, South America. En: Bulletin of Environmental Contamination and Toxicology, 99, pp.488–492. DOI: 10.1007/s00128-017-2158-7.

González-Piana, M., Piccardo, A., Ferrer, C., Brena, B., Pirez, M., Fabian, D. y Chalar, G., 2018. Effects of wind mixing in a stratified water column on toxic cyanobacteria and Microcystin-LR distribution in a subtropical reservoir. En: Bulletin of Environmental Contamination and Toxicology, 101, pp.611–616. DOI: 10.1007/s00128-018-2446-x.

González-Sapienza, G., Rossotti, M.A. y Tabares-Da Rosa, S., 2017. Single-domain antibodies as versatile affinity reagents for analytical and diagnostic applications. En:Frontiers in Immunology, 8(977). DOI: 10.3389/fimmu.2017.00977.

Hu, X., Ye, J., Zhang, R., Wu, X., Zhang, Y. y Wu, C., 2017. Detection of free microcystins in the liver and muscle of freshwater fish by liquid chromatography-tandem mass spectrometry. En: Journal of Environmental Science and Health, Part B, 52(10), pp. 770-776. DOI: 10.1080/03601234.2017.1356670.

Huisman, J., Codd, G.A, Paerl, H.W., Ibelings, B.W., Verspagen, J.M. y Visser, P.M., 2018. Cyanobacterial blooms. En: Nature Reviews Microbiology, 16, pp.471–483.

Ibelings, B.W. y Chorus, I., 2007. Accumulation of cyanobacterial toxins in freshwater ‘‘seafood’’ and its consequences for public health: a review. En: Environmental Pollution, 150, pp.177-192.

Kruk, C., Martínez, A., Martínez de la Escalera, G., Trinchin, R., Manta, G., Segura, A., Piccini, C., Brena, B., Fabiano, G., Pirez, M., Gabito, L., Alcántara, I. y Yannicelli, B., 2019. Floración excepcional de cianobacterias tóxicas en la costa de Uruguay, verano 2019. En: INNOTEC, 18, pp.36-68.

Le Manach, S., Sotton, B., Huet, H., Duval, C., Paris, A., Marie, A., Yépremian, C., Catherine, A., Mathéron, L., Vinh, J., Edery, M. y Marie, B., 2018. Physiological effects caused by microcystin-producing and non-microcystin producing Microcystis aeruginosa on medaka fish: a proteomic and metabolomic study on liver. En: Environmental Pollution, 234, pp.523-537. DOI: 10.1016/j.envpol.2017.11.011.

Li, X.Y., Chung, I.K., Kim, J.I. y Lee, J.A, 2004. Subchronic oral toxicity of microcystin in common carp (Cyprinus carpio L.) exposed to Microcystis under laboratory conditions. En: Toxicon,44(8), pp.821-827. https://doi.org/10.1016/j.toxicon.2004.06.010.

Li, L. y Xie, P., 2009. Hepatic histopathological characteristics and antioxicant responses of phytoplanctivorous silver carp intraperitonally injected with extracted microctystins. En: Biomedical and Envoronmental Sciences, 22, pp.297-302.

Meriluoto, J., Spoof, L. y Codd, G.A., eds., 2017. Handbook of cyanobacterial monitoring and cyanotoxin analysis. Londres: John Wiley & Sons.

Niedermeyer, T., Prinsep, M.R., Wood, S.A., Kaufononga, S.A.F., Cary, S.C. y Hamilton, D.P., 2014. High levels structural diversity observed in microcystins from Microcystis CAWBG11 and characterization of six new microcystin congeners. En: Marine Drugs, 12, pp.5372–5395.

Pírez-Schirmer, M., Gonzalez-Sapienza, G., Sienra, D., Ferrari, G., Last, M., Last, J.A. y Brena, B.M., 2013. Limited analytical capacity for cyanotoxins in developing countries may hide serious environmental health problems: Simple and affordable methods maybe the answer. En: Journal of Environmental Management, 114, pp. 63-71.

Pírez-Schirmer, M., Rossotti, M.A., Badagian, N., Leizagoyen, C., Brena, B.M. y Gonzalez-Sapienza, G.G., 2017. Comparison of three anti-hapten VHH selection strategies for the development of highly sensitive immunoassays for microcystins. En: Analythical Chemistry, 89(12), pp.6800-6806.

Pírez-Schirmer, M., Brena, B.M. y González-Sapienza, G., 2019. Oriented functionalization of magnetic beads with in vivo biotinylated nanobodies for rapid MALDI-TOFMS. Ultrasensitive quantitation of microcystins in biological samples. En: Analythical Chemistry, 91(15), pp.9925-9993.

Poste, A.E., Hecky, R.E. y Guildford, S.J., 2011. Evaluating microcystin exposure risk through fish consumption. En: Environmental Science and Technology, 45, pp. 5806–5811. DOI: 10.1021/es200285c.

Preeti, T., Hariharan, G. y Rajarajeswari, G.R., 2016. Histopathological and biochemical effects of cyanobacterial cells containing microcystin-LR on Tila-pia fish. En: Water and Environment Journal, 30(1-2), pp.135-142 DOI: 10.1111/wej.12169.

Prieto, A., Atencio, L., Puerto, M., Pichardo, S., Moreno, I. y Cameán, A., 2008. Efectos tóxicos producidos por las microcistinas en peces. En: Toxicology, 25, pp.22-31.

Qi, Y., Rosso, L., Sedan, D., Giannuzzi, L., Andrinolo, D. y Volmer, D.A., 2015. Seven new microcystin variants discovered from native Microcystis aeruginosa strain‐unambigous assignment of product ions by tandem mass spectrometry. En: Rapid Communications in Mass Spectrometry, 29, pp.220-224.

Roegner, A., Truong, L., Weirich, C., Pírez-Schirmer, M., Brena, B., Miller, T.R. y Tanguay, R., 2019. Combined Danio rerio embryo morbidity, mortality and pho-tomotor response assay: a tool for developmental risk assessment from chronic cyanoHAB exposure. En: Science of The Total Environment, 697. DOI: 10.1016/j.scitotenv.2019.134210.

Schmidt, J.R., Wilhelm, S.W. y Boyer, G.L., 2014. The fate of Microcystins in the environment and challenges for monitoring. En: Toxins, 6, pp.3354-3387. DOI:10.3390/toxins6123354.

Spoof, L. y Catherine, A., 2017. Tables of microcystins and nodularins. En: Meriluoto, J., Spoof, L. y Codd, G.A., eds. Handbook of cianobacterial mo-nitoring and cyanotoxin analysis. Londres: John Wiley & Sons. Appendix 3, pp.541-552.

Svirčev, Z., Drobac, D., Tokodi, N., Mijović, B., Codd, G. A., Meriluoto, J., 2017. Toxicology of microcystins with reference to cases of human intoxications and epidemiological investigations of exposures to cyanobacteria and cyanotoxins. En: Archives of Toxicology, 91(2), pp.621–650. DOI:10.1007/s00204-016-1921-6.

Svirčev, Z., Lalić, D., Bojadžija Savić, G., Tokodi N., Drobac Backović D., Chen L., Meriluoto J. y Codd GA., 2019. Global geographical and historical overview of cyanotoxin distribution and cyanobacterial poisonings. En: Archives of Toxicology, 93, pp.2429–2481. DOI:10.1007/s00204-019-02524-4.

UNESCO, 2009. Cianobacterias Planctónicas del Uruguay. Manual para la identificación y medidas de gestión. Montevideo: UNESCO. (Documento Técnico PHI-LAC, 16). ISBN 978-92-9089-138-3.

Uruguay, Ministerio de Vivienda, Ordenamiento Territorial y Medio Ambiente, 2019. Iniciativa para el Rio Negro [En línea]. Montevideo: DINAMA [Consulta: 14 de febrero de 2020]. Disponible en: https://www.mvotma.gub.uy/novedades/noticias/item/10012209-iniciativa-para-el-rio-negro.

Zaffiro, A., Rosenblum, L. y Wendelken, S.C., 2016. Method 546: Determination of total microcystins and nodularins in drinking water and ambient water by adda enzyme-linked immunosorbent assay[En línea]. Cincinnati: USEPA. [Con-sulta: 6 de Abril de 2018] Disponible en: https://www.epa.gov/sites/production/files/2016-09/documents/method-546-determination-total-microcystins-nodularins-drinking-water-ambient-water-adda-enzyme-linked-immunosorbent-assay.pdf.

Zanchett, G. y Oliveira-Filho, E.C., 2013. Cyanobacteria and Cyanotoxins: from impacts on aquatic ecosystems and human health to anticarcinogenic effects. En: Toxins, 5, pp.1896-1917.

Publicado

2020-06-03

Como Citar

Badagian Baharian, N., Letamendia, M., Pírez, M., Carnevia, D., & Brena, B. (2020). Novas metodologias para a análise de microcistinas em peixes: Estudo de Astraloheros Facetus expostos in vitro. INNOTEC, (20 jul-dic), 10–29. https://doi.org/10.26461/20.03

Edição

Seção

Artículos

Artigos mais lidos pelo mesmo(s) autor(es)