Resistividade elétrica da madeira de Pinus pseudostrobus, Tabebuia rosea e Quercus scytophylla

Autores

  • Javier Ramón Sotomayor Castellanos Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México https://orcid.org/0000-0002-1527-8801
  • Isarael Macedo Alquicira Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México
  • Ernesto Mendoza González Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México. https://orcid.org/0000-0002-7284-7708

DOI:

https://doi.org/10.26461/24.07

Palavras-chave:

densidade da madeira, umidade da madeira, resistência elétrica, corrente contínua, anisotropia

Resumo

O objetivo da pesquisa foi determinar a resistividade elétrica da madeira de Pinus pseudostrobus, Tabebuia rosea e Quercus scytophylla nas direções da anisotropia. Para isso, foram preparados 20 espécimes de madeira maciça de cada uma das espécies com dimensões de 20 mm × 20 mm × 20 mm nas direções radial, tangencial e longitudinal, respectivamente, e foram determinados a densidade e o teor de umidade da madeira. Para realizar os testes de resistividade elétrica, a resistência elétrica foi medida usando corrente contínua com uma tensão de teste de 1000 volts. O conteúdo de umidade foi para P. pseudostrobus 12,6%, para T. rosea 10,6% e para Q. scytophylla 15,6%. A resistividade elétrica transversal média foi para P. pseudostrobus 45,5 MΩ m, para T. rosea 10,3 MΩ m, e para Q. scytophylla 61,4 MΩ m. A resistividade elétrica longitudinal foi para P. pseudostrobus 24,7 MΩ m, para T. rosea 2,2 MΩ m, e para Q. scytophylla 19,6 MΩ m. As magnitudes das resistências longitudinais medidas nas três madeiras são semelhantes às das madeiras relatadas na literatura. Outra constatação foi que os valores de resistividade apresentam diferenças entre as direções de anisotropia da madeira e entre as espécies estudadas.

Downloads

Não há dados estatísticos.

Referências

Casans Berga, S., Garcia-Gil, R., Navarro Anton, A. E. y Rosado-Muñoz, A., 2019. Novel wood resistance measurement method reducing the initial transient instabilities arising in DC methods due to polarization effects. En: Electronics, 8(11). DOI: https://doi.org/10.3390/electronics8111253

Fediuk, A., Wilken, D., Wunderlich, T. y Rabbel, W. 2020. Physical Parameters and Contrasts of Wooden Objects in Lacustrine Environment: Ground Penetrating Radar and Geoelectrics. En: Geosciences, 10(4), 146. DOI: https://doi.org/10.3390/geosciences10040146

Fernández-Golfin, J., Conde Garcia, M., Fernández-Golfin, J. J., Calvo Haro, R., Baonza Merino, M. V. y De Palacios, P., 2012. Curves for the estimation of the moisture content of ten hardwoods by means of electrical resistance measurements. En: Forest Systems, 21(1), pp.121-127. DOI: http://dx.doi.org/10.5424/fs/2112211-11429

Fredriksson, M., Thybring, E. E. y Zelinka, S. L., 2021. Artifacts in electrical measurements on wood caused by non-uniform moisture distributions. En: Holzforschung, 75(6), pp.517-525. DOI: https://doi.org/10.1515/hf-2020-0138

Ganthaler, A., Sailer, J., Bär, A., Losso, A. y Mayr, S., 2019. Noninvasive analysis of tree stems by electrical resistivity tomography: unraveling the effects of temperature, water status, and electrode installation. En: Frontiers in Plant Science, 10. DOI: http://doi.org/10.3389/fpls.2019.01455

Gao, S., Bao, Z., Wang, L. y Yue, X., 2018. Comparison of voltammetry and digital bridge methods for electrical resistance measurements in wood. En: Computers and Electronics in Agriculture, 145, pp.161-168. DOI: https://doi.org/10.1016/j.compag.2017.11.004

Gao, S., Yue, X. y Wang, L., 2019. Effect of the degree of decay on the electrical resistance of wood degraded by brown-rot fungi. En: Canadian Journal of Forest Research, 49(2), pp.145-153. DOI: https://doi.org /10.1139/cjfr-2018-0282

Grönquist, P., Weibel, G., Leyder, C. y Frangi, A., 2021. Calibration of electrical resistance to moisture content for beech laminated veneer lumber “BauBuche S” and “BauBuche Q”. En: Forests, 12(5), 635. DOI: https://doi.org/10.3390/f12050635

Guo, H., Büchel, M., Li, X., Wäckerlin, A., Chen, Q. y Burgert, I. 2018. Dictating anisotropic electric conductivity of a transparent copper nanowire coating by the surface structure of wood. En: Journal of the Royal Society Interface, 15(142). DOI: http://doi.org/10.1098/rsif.2017.0864

Hafsa, W., Angellier, N., Takarli, M. y Pop, O. 2021. A mixed experimental-numerical electrical resistivity‑based method for moisture content assessment in wood tested using the example of Douglas fir. En: Wood Science and Technology, 55(4), pp.697-718. DOI: https://doi.org/10.1007/s00226-021-01281-x

Hwang, S. W., Hwang, S. Y., Lee, T., Ahn, K. S., Pang, S. J., Park, J., Oh, J. K., Kwak, H. W. y Yeo, H., 2021. Investigation of electrical characteristics using various electrodes for evaluating the moisture content in wood. En: BioResources, 16(4), pp.7040-7055. DOI: https://doi.org/10.15376/biores.16.4.7040-7055

Jakes, J. E., Plaza, N., Stone, D. S., Hunt, C. G., Glass, S. V. y Zelinka, S. L., 2013. Mechanism of transport through wood cell wall polymers. En: Journal of Forest Products & Industries, 2(6), pp.10-13. DOI: https://www.fpl.fs.fed.us/documnts/pdf2013/fpl_2013_jakes002.pdf

Jiang, Z. H., Chen, Z., Fen, B. H., Hou Z. Q. y Chen, G. H., 2003. Modeling ovendry softwood resistivity based on the resistor network theory. En: Holzforschung, 57(4), pp.415-420. DOI: https://doi.org/10.1515/HF.2003.061

Kirker, G. T., Bishell, A. B. y Zelinka, S. L., 2016. Electrical properties of wood colonized by Gloeophyllum trabeum. En: International Biodeterioration & Biodegradation, 114, pp.110-115. DOI: http://dx.doi.org/10.1016/j.ibiod.2016.06.004

Li, J., Wang, Y., Zhang, J. y Qi, D., 2020. Physical characteristics and fluorescence effect of “environmentally friendly” metallized wood. En: AIP Advances, 10, 045133. DOI: https://doi.org/10.1063/1.5127236

Losso, A., Sailer, J., Bär, A., Ganthaler, A. y Mayr, S., 2020. Insights into trunks of Pinus cembra L.: analyses of hydraulics via electrical resistivity tomography. En: Trees, 34, pp.999-1008. DOI: https://doi.org/10.1007/s00468-020-01976-x

Luo, Z., Guan, H. y Zhang, X., 2019. The temperature effect and correction models for using electrical resistivity to estimate wood moisture variations. En: Journal of Hydrology, 578. DOI: https://doi.org/10.1016/j.jhydrol.2019.124022

Martin, T. y Günther, T., 2013. Complex resistivity tomography (CRT) for fungus detection on standing oak trees. En: European Journal of Forest Resources, 132(5-6), pp.765-776. DOI: https://doi.org/10.1007/s10342-013-0711-4

Otten, K. A., Brischke, C. y Meyer, C., 2017. Material moisture content of wood and cement mortars-Electrical resistance-based measurements in the high ohmic range. En: Construction and Building Materials, 153, pp.640-646. DOI: http://dx.doi.org/10.1016/j.conbuildmat.2017.07.090

Simpson, W. y TenWolde, A., 2010. Physical properties and moisture relations of wood. Chapter 3. En: Forest Products Laboratory. Wood handbook-wood as an engineering material. General Technical Report FPL-GTR-190. Madison: U.S. Department of Agriculture, Forest Service, Forest Products Laboratory. DOI: https://doi.org/10.2737/FPL-GTR-190

Slávik, R., Čekon, M. y Štefaňák, J., 2019. A nondestructive indirect approach to long-term wood moisture monitoring based on electrical methods. En: Materials, 12, 2373. DOI: https://doi.org/10.3390/ma12152373

Sotomayor Castellanos, J. R., 2015. Banco FITECMA de características físico-mecánicas de maderas mexicanas [En línea]. Morelia: Universidad Michoacana de San Nicolás de Hidalgo. ISBN: 978-607-00-9036-3. [Co nsulta: 12 de marzo de 2022]. Disponible en: https://www.academia.edu/12448352/Banco_FITECMA_de_caracter%C3%ADsticas_f%C3%ADsico_mec%C3%A1nicas_de_maderas_Mexicanas

Suzuki, T., Hasemi, Y., Kamikawa, D., Yasui, N., Kaku, C. y Suzuki, J. I., 2021. Development of dynamic moisture content measurement system for wooden members exposed to fire heating. En: Japan Architectural Review, 4(3), pp.431-441. DOI: https://doi.org/10.1002/2475-8876.12223

Van Blokland, J. y Adamopoulos, S., 2022. Electrical resistance characteristics of thermally modified wood. En: European Journal of Wood and Wood Products, 80, pp.749-752. DOI: https://doi.org/10.1007/s00107-022-01813-7

Xu, H., Li, Q., Xu, Q., Bao, Z., Wang, L. y Xing, T., 2019. Effects of brown-rot decay on the electrical resistance of wood and its mechanism [En línea]. En: BioResources, 14(3), pp.6134-6145. [Co nsulta: 12 de marzo de 2022]. Disponible en: https://bioresources.cnr.ncsu.edu/wp-content/uploads/2019/06/BioRes_14_3_6134_Xu_XBWX_Effects_Brown_rot_Decay_Electric_Resistance_Wood_14994.pdf

Zelinka, S. L., Passarini, L., Colon Quintana, J. L., Glass, S. V., Jakes, J. E. y Wiedenhoeft, A. C., 2016. Cell wall domain and moisture content influence Southern Pine electrical conductivity. En: Wood and Fiber Science, 48, pp.54-61. DOI: https://www.fpl.fs.fed.us/documnts/pdf2016/fpl_2016_zelinka004.pdf

Zhang, J. Y. y Shen, Q., 2019. Processing natural wood into bulk conducting materials. En: SN Applied Sciences, 1(12), 1579. DOI: http://doi.org/10.1007/s42452-019-1572-3

Publicado

2022-12-28

Como Citar

Sotomayor Castellanos, J. R., Macedo Alquicira, I., & Mendoza González, E. (2022). Resistividade elétrica da madeira de Pinus pseudostrobus, Tabebuia rosea e Quercus scytophylla. INNOTEC, (24 jul-dic), e621. https://doi.org/10.26461/24.07

Edição

Seção

Artículos