New Polymeric Materials derived from renewable sources

Authors

  • Mary Isabel Lopretti Correa Laboratorio de Bioquímica y Biotecnología, Facultad de Ciencias, Universidad de la República, Uruguay.Departamento de Proyectos de Bioprocesos, Laboratorio Tecnológico del Uruguay, LATU, Uruguay.
  • Alessandro Gandini Chemistry Department, University of Aveiro, Portugal (2007-2011)

DOI:

https://doi.org/10.26461/07.10

Keywords:

Lignin, biological conversion, enzymes, polymers

Abstract

In the last years it has been worked on the concept of Biomasic as an alternative to Petroquimic. An increasing interest of renewable resources in the area of energy and materials exists. In this work the synthesis of new polymeric materials derived from several renewable sources with emphasis in the valuation of lignins, with an oxidative systems enzymatic presents in two stocks of fungi G. trabeum and P. ostreatus in different combinations starters, were studied. The purpose was the optimization and modeling of the enzimatic production by semi solid fermentation process. The activity on Kraft and Organosolv lignins was analized and it was observed diminution of the molecular weight and an increase of the carbonyl groups in the tests with models and with lignins. We conclude that for both fungus the origin of the lignin as a carbon source is irrelevant. We consider that the production of standardized enzymatic extracts can be an interesting contribution at the time of making modifications in industrial lignins to obtain “well-known functional units”. In future works the kinetic of modification will be studied with the objective to make possible a future industrial application.

Downloads

Download data is not yet available.

References

AGOSIN, E.; BLANCHETE, R. Characterization of palo podrido, a natural process of delignification in wood. En: Appl. Environ.Microbiol. 1990, 11:511-517.

AGOSIN, E.; JARPA, S.; ROJAS, E.; ESPEJO, E. Solid state fermentation of pine sawdust by selected brown-rot fungi. En: Enzyme Microb. Technol. 1989, 11:511-517.

GANDINI, A. Les lignines et leur utilisation dans les matériaux macromoléculaires. En: Initiation à la chimie et à la physicochimie macromoléculaires. 2002, 13:57-62.

HOJAS, M. S. Bioconversión de eucaliptus explotado. Uso en resinas fenólicas modificadas. Santiago: Pontificia Universidad Católica de Chile, 1999. (Tesis de Doctorado).

HIGUCHI, T. Lignin structure and morphological distribution in plant cell walls. En: KIRK, T.K.; HIGUCHI, T.; CHANG, H.M. Lignin biodegradation; microbiology, chemistry, and potential applications. Vol.1. Boca Raton: CRC Press, 1980. pp1-19.

KIRK, T.K.; CONNORS, W.J.; ZEIKUS, J. Requirement for a growth sustrate during lignin decomposition by twoo wood rothing fungi. En: Appl. Envir. Microbiol.1976, 32:192-194.

LOPRETTI, M. Sistemas enzimáticos de hongos y bacterias modificadores de lignina. Montevideo: Facultad de Ciencias Universidad de la República, 1999. (Tesis de Doctorado).

LOPRETTI, M.; CARLOMAGNO, M.; GERVACIO, S.; GANDOMENICO, A. Enzymatic production of phenols from wastes of the paper Industry. En: Biomass of Energ and Ind. 2004:1951-1954.

LOWRY, O.II.; ROSEHROUGH, N.J.; FARR, A.; RANDALL, R.J. Protein measurement with the Folin phenol reagent. En: Biol. Chem. 1951, 193:265-275.

TIEN, M.; KIRK, T.K. Lignin-degradating enzyme from Phanerochaete Chrysosporium: purification, characterization and catalytic properties of a unique H2O2-requiring oxygenase. En: Proc. Nat. Acad. Sci. 1984, 81:2280-2284.

VENICA, A. Transformación de lignina en productos de alto valor agregado. [s.l.]: CYTED,1997.

VICUÑA, R. Bacterial degradation of lignin. En: Enzyme Microbiol. Technol.,1988. 10:646-655.

Published

2013-01-07

How to Cite

Lopretti Correa, M. I., & Gandini, A. (2013). New Polymeric Materials derived from renewable sources. INNOTEC, (7 ene-dic), 59–63. https://doi.org/10.26461/07.10

Issue

Section

Articles