Screening of native basidiomycete capable of degrading xenobiotics using endosulfan as a model

Authors

  • Anisleidy Rivero Machado Departamento de Microbiología, Laboratorio Tecnológico del Uruguay, LATU. Unidad Fray Bentos
  • Silvina Niell Polo Agroalimentario y Agroindustial, CUP, UDELAR
  • Horacio Heinzen Departamento de Química Orgánica, Departamento de Química del Litoral, Facultad de Química, UDELAR
  • María Verónica Cesio Departamento de Química Orgánica, Departamento de Química del Litoral, Facultad de Química, UDELAR
  • María Pía Cerdeiras Departamento de Biociencias, Cátedra de Microbiología, Facultad de Química, UDELAR
  • Matilde Soubes Departamento de Biociencias, Cátedra de Microbiología, Facultad de Química, UDELAR

DOI:

https://doi.org/10.26461/12.03

Keywords:

Biorremediación, Hongos de la podredumbre de la madera, cribado.

Abstract

Removal of recalcitrant environmental pollutants is a major problem. In particular, there are no methods other than incineration or landfilling for the removal of organochlorine compounds like PCBs, dioxins and chlorinated pesticides. These were widely used in the past, but now are either found as contaminants in the environment or stored in large quantities where they constitute a big risk. The search for alternatives to solve this issue sets a challenge for environmental sustainability. Biotransformation by basidiomycetes to remediate contaminated sites is an unexplored path in the region, despite the development these technologies have in European countries. In order to select fungi capable of degrading persistent compounds into harmless ones, a screening of native basidiomycetes isolated from natural sources was performed. The insecticide endosulfan was used as model molecule; endosulfan was banned in the European Union in 2007 and in our country in 2011. It was widely used in soybean cultivation and there are tons stored waiting its destruction. Specific methodologies were developed for evaluation of the biotransformation and the results were followed by gC-ECD. One of the fungi studied, Bjerkandera adusta, was able to degrade 87% of the added endosulfan after 27 days of incubation.

Downloads

Download data is not yet available.

References

Bending, g. D., Friloux, M. y Walker, A., 2002. Degradation of contrasting pesticides by white rot fungi and its relationship with ligninolytic potential. En: FEMS Microbiology Letters, 212, pp.59-63.

Cohen, R., Persky, L. Y Hadar, Y., 2002. Biotechnological applications and potential of wood-degrading mushrooms of the genus Pleurotus. En: Applied Microbiology and Biotechnology, 58, pp.582-594.

Choi, Y., Seo, J., Lee, H., Yoo, J., Jung, J., Kim, J. Y Kim, g., 2014. Decolorization and detoxification of wastewater Containing industrial dyes by Bjerkandera adusta KUC9065. En: Wa t e r, Air, and Soil Pollution, 225, pp.1801-1801.

Christian, V., Shrivastava, R., Shukla, D., Modi, H. y Vyas, B., 2005. Degradation of xenobiotic compounds by lignin-degrading white-rot fungi: enzymology and mechanisms involved. En: Indian J Exp Biol, 43, pp.301-302.

Eichlerová, I., Homolka, L. y Nerud, F., 2002. Decolorization of synthetic dyes byPleurotus ostreatus isolates differing in ligninolytic properties. En: Folia Microbiologica, 47, pp.691-695.

Hirai, H., Nakanishi, S. y Nishida, T., 2004. Oxidative dechlorination of methoxychlor by ligninolytic enzymes from white-rot fungi. En: Chemosphere, 55, pp.641-645.

Jaszek, M., grzywnowicz, K., Malarczyk, E. y Leonowicz, A., 2006. Enhanced extracellular laccase activity as a part of the response system of white rot fungi: Trametes versicolor and Abortiporus biennis to paraquat-caused oxidative stress conditions. En: Pesticide Biochemistry and Physiology, 85, pp.147-154.

Karas, P. A., Perruchon, C., Exarhou, K., Ehaliotis, C. y Karpouzas, D. g., 2011. Potential for bioremediation of agro-industrial effluents with high loads of pesticides by selected fungi. En: Biodegradation, 22, pp.215-228.

Keum, Y. S. y Li, Q. X., 2004. Fungal laccase-catalyzed degradation of hydroxy polychlorinated biphenyls. En: Chemosphere, 56, pp.23-30.

Korniłłowicz-Kowalska, T. y Rybczyńska, K., 2012. Decolorization of Remazol Brilliant Blue (RBBR) and Poly R-478 dyes by Bjerkandera adusta CCBAS 930. En: Central European Journal of Biology, 7, pp.948-956.

Kües, U., 2015. Fungal enzymes for environmental management. En: Current Opinion in Biotechnology, 33, pp.268-278.

Kullman, S. W. y Matsumura, F., 1996. Metabolic pathways utilized by Phanerochaete chrysosporium for degradation of the cyclodiene pesticide endosulfan. En: Applied and Environmental Microbiology, 62, pp.593-600.

Kumar, M. y Philip, L., 2006. Enrichment and isolation of a mixed bacterial culture for complete mineralization of Endosulfan. En: Journal of Environmental Science and Health, Part B, 41, pp.81-96.

Kwon, g.-S., Sohn, H.-Y., Shin, K.-S., Kim, E. y Seo, B.-I., 2005. Biodegradation of the organochlorine insecticide, endosulfan, and the toxic metabolite, endosulfan sulfate, by Klebsiella oxytoca KE-8. En: Applied Microbiology and Biotechnology, 67, pp.845-850.

Lamar, R. T., 1992. The role of fungal lignin-degrading enzymes in xenobiotic degradation. En: Current Opinion in Biotechnology, 3, pp.261-266.

Levin, L., Papinutti, L. y Forchiassin, F., 2004. Evaluation of Argentinean white rot fungi for their ability to produce lignin-modifying enzymes and decolorize industrial dyes. En: Bioresource Technology, 94, pp.169-176.

Mester, T. y Tien, M., 2000. Oxidation mechanism of ligninolytic enzymes involved in the degradation of environmental pollutants. En: International Biodeterioration & Biodegradation, 46, pp.51-59.

Mor, F. y Ozmen, O., 2003. Acute endosulfan poisoning in cattle. En: Veterinary and Human Toxicology, 45, pp.323-324.

Moreira, M., Palma, C., Mielgo, I., Feijoo, g. y Lema, J., 2001. In vitro degradation of a polymeric dye (Poly R‐478) by manganese peroxidase. En: Biotechnology and Bioengineering, 75, pp.362-368.

Moreno, C. M., Becerra, A. g. y Santos, M. J. B., 2004. Tratamientos biológicos de suelos contaminados: contaminación por hidrocarburos. Aplicaciones de hongos en tratamientos de biorrecuperación. En: Rev Iberoam Micol, 21, pp.103-120.

Mukherjee, I. y Mittal, A., 2005. Bioremediation of endosulfan using Aspergillus terreus and Cladosporium oxysporum. En: Bulletin of Environmental Contamination and Toxicology, 75, pp. 1034-1040.

Novotný, Č., Erbanová, P., Šašek, V., Kubátová, A., Cajthaml, T., Lang, E., Krahl, J. y Zadražil, F., 1999. Extracellular oxidative enzyme production and PAH removal in soil by exploratory mycelium of white rot fungi. En: Biodegradation, 10, pp.159-168.

Novotný, Č., Svobodová, K., Erbanová, P., Cajthaml, T., Kasinath, A., Lang, E. y Šašek, V., 2004. Ligninolytic fungi in bioremediation: extracellular enzyme production and degradation rate. En: Soil Biology and Biochemistry, 36, pp.1545-1551.

Pointing, S., 2001. Feasibility of bioremediation by white-rot fungi. En: Applied Microbiology and Biotechnology, 57, pp.20-33.

Quintero Díaz, J. C., 2011. Revisión: degradación de plaguicidas mediante hongos de la pudrición blanca de la madera. En: Revista Facultad Nacional de Agronomía, Medellín, 64, pp.5867-5882.

Rivero, A., Niell, S., Cesio, V., Cerdeiras, M. P. y Heinzen, H., 2012. Analytical methodology for the study of endosulfan bioremediation under controlled conditions with white rot fungi. En: Journal of Chromatography B, 907, pp.168-172.

Sarnthima, R. y Khammuang, S., 2013. Laccase production by Pycnoporus sanguineus grown under liquid state culture and its potential in remazol brilliant blue R decolorization. En: International Journal of Agriculture and Biology, 15, pp.215-222.

Scheel, T., Höfer, M., Ludwig, S. y Hölker, U., 2000. Differential expression of manganese peroxidase and laccase in white-rot fungi in the presence of manganese or aromatic compounds. En: Applied Microbiology and Biotechnology, 54, pp.686-691.

Shah, V. y Nerud, F., 2002. Lignin degrading system of white-rot fungi and its exploitation for dye decolorization. En: Canadian Journal of Microbiology, 48, pp.857-870.

Tabak, H., govind, R., Fu, C. y gao, C., 1997. Protocol for determining bioavailability and biodegradation kinetics of organic soil pollutants in soil systems to enhance bioremediation of polluted soil sites. En: Bioremediation Protocols, 2, pp.223-240

Uruguay. Resolución 056. mgAP, de 17 de enero de 2011. Disposiciones sobre aplicación de productos fitosanitarios formulados a base de ENDOSULFAN.

Walter, M., Boul, L., Chong, R. y Ford, C., 2004. growth substrate selection and biodegradation of PCP by New Zealand white-rot fungi. En: Journal of Environmental Management, 71, pp.361-369.

Weir, K. M., Sutherland, T. D., Horne, I., Russell, R. J. y Oakeshott, J. g., 2006. A single monooxygenase, ese, is involved in the metabolism of the organochlorides endosulfan and endosulfate in an Arthrobacter sp. En: Applied and Environmental Microbiology, 72, pp.3524-3530.

Wen, X., Jia, Y. y Li, J., 2010. Enzymatic degradation of tetracycline and oxytetracycline by crude manganese peroxidase prepared from Phanerochaete chrysosporium. En: Journal of Hazardous Materials, 177, pp.924-928.

Zhao, X., Huang, X., Yao, J., Zhou, Y. y Jia, R., 2014. Fungal growth and manganese peroxidase production in a deep tray solid-state bioreactor, and in vitro decolorization of poly R-478 by MnP. En: Journal of Microbiology and Biotechnology, 25, pp.803-813.

Zheng, Z. y Obbard, J. P., 2002. Removal of surfactant solubilized polycyclic aromatic hydrocarbons by Phanerochaete chrysosporium in a rotating biological contactor reactor. En: Journal of Biotechnology, 96, pp.241-249.

Published

2016-12-16

How to Cite

Rivero Machado, A., Niell, S., Heinzen, H., Cesio, M. V., Cerdeiras, M. P., & Soubes, M. (2016). Screening of native basidiomycete capable of degrading xenobiotics using endosulfan as a model. INNOTEC, (12 ago-dic), 27–33. https://doi.org/10.26461/12.03

Issue

Section

Articles

Most read articles by the same author(s)