Comparison of the size of gold nanoparticles using different measurement techniques and protocols

Authors

  • Santiago Botasini Laboratorio de Biomateriales, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay https://orcid.org/0000-0002-6488-5886

DOI:

https://doi.org/10.26461/21.02

Keywords:

nanoparticles, gold, size, colloids, nanometrology

Abstract

With the increasing advance of nanotechnology, both in the academic and commercial areas, the need for nanoparticle characterization techniques and protocols has grown. Although there are several measurement methods, the "true" size of nanoparticles cannot be understood in absolute terms but related to the material, the technique and to the protocols or criteria associated with these measurements. In other words, when we talk about the size of a particle, we must take into account two basic questions: what are we measuring? and how do we measure? From the metrological point of view, it is important to discuss the criteria to take into account, and which additional parameters should we report when presenting a nanoparticle size result. The present work shows, comparatively, the characterization of the size of homogeneous gold nanoparticles, using different techniques and measurement criteria with DLS, UV-VIS and HR-TEM methods. The results show how the definition of size is important to establish a result, as well as the criteria chosen when performing the particle counting.

Downloads

Download data is not yet available.

References

Amendola, V. y Meneghetti, M., 2009. Size evaluation of gold nanoparticles by UV-vis spectroscopy. En:Journal of Physical Chemistry C,113(11), pp.4277–4285. https://doi.org/10.1021/jp8082425.

Bienert, R., Emmerling, F. y Thünemann, A.F., 2009. The size distribution of “gold standard” nanoparticles. En: Analytical and Bioanalytical Chemistry,395(6), pp.1651–1660.doi: https://doi.org/10.1007/s00216-009-3049-5 .

Brito-Silva, A.M., Sobral-Filho, R.G., Barbosa-Silva, R., de Araújo, C.B., Galembeck,A. y Brolo, A.G., 2013. Improved synthesis of gold and silver nanoshells. En: Langmuir,29(13), pp.4366–4372. https://doi.org/10.1021/la3050626 .

Bohren, C. y Huffman, D., 2004. Absorption and scattering of light by small particles. Derby: Wiley.

Domingos, R.F., Baalousha, M., Ju-Nam, Y., Reid, M., Tufenkji, N., Lead, J., Leppard, G. y Wilkinson, K., 2009. Characterizing manufactured nanoparticles in the environment: multimethod determination of particle sizes. En: Environ Sci Technol,43, pp.7277-7284. https://doi.org/10.1021/es900249m .

Eaton, P. Quaresma, P., Soares, C., Neves, C., de Almeida, M.P., Pereira, E. y West, P., 2017. A direct comparison of experimental methods to measure dimensions of synthetic nanoparticles. En: Ultramicroscopy,182, pp.179–190. https://doi.org/10.1016/j.ultramic.2017.07.001

Fissan, H., Ristig, S., Kaminski, H., Asbacha, C. y Epplebc, M., 2014. Comparison of different characterization methods for nanoparticle dispersions before and after aerosolization. En: Analytical Methods,6(18), pp.7324–7334. doi: https://doi.org/10.1039/c4ay01203h .

International Organization for Standarization, 2017. ISO 22412: Particle size analysis — Dynamic light scattering (DLS).Ginebra: ISO.

Hinterwirth, H., Wiedmer, S., Moilanen, M., Lehner, A., Allmaier, G., Waitz, T., Lindner, W. y Lämmerhofer, M., 2013. Comparative method evaluation for size and size-distribution analysis of gold nanoparticles. En: Journal of Separation Science,36(17), pp.2952–2961. doi: https://doi.org/10.1002/jssc.201300460 .

Khlebtsov, B.N. y Khlebtsov, N.G., 2011. On the measurement of gold nanoparticle sizes by the dynamic light scattering method. En: Colloid Journal,73(1), pp.118–127. doi: https://doi.org/10.1134/S1061933X11010078 .

Laven, P., 2018. MiePlot[En linea]. [s.l.]: [s.n]. [Consulta: 18 de mayo de 2020]. Disponible en:http://www.philiplaven.com/mieplot.htm .

Liu, X., Atwater, M., Wang, J. y Huo, Q., 2007. Extinction coefficient of gold nanoparticles with different sizes and different capping ligands. En: Colloids and Surfaces B: Biointerfaces,58(1), pp.3–7.[Consulta: 18 de mayo de 2020]. Disponible en: https://doi.org/10.1016/j.colsurfb.2006.08.005 .

Meli, F., Klein, T., Buhr, E., Frase, C., Gleber, G., Krumrey, M., Duta, A., Duta, S., Korpelainen, V., Bellotti, R., Picotto, G., Boyd, R. y Cuenat, A., 2012. Traceable size determination of nanoparticles, a comparison among European metrology institutes. En: Measurement Science and Technology,23(12). doi:https://doi.org/10.1088/0957-0233/23/12/125005 .

Méndez, Eduardo y Botasini, Santiago, 2019. Synthesis of ultra-homogeneous gold nanoparticles. En: Proceedings of the World Congress on New Technologies,(NewTech’19). Lisboa: International ASET. pp. 11159. DOI: https://doi.org/10.11159/icnfa19.152.

Minelli, C., Bartczak, D., Peters, R., Rissler, J., Undas, A., Sikora, A., Sjöström, E., Goenaga-Infante, H. y Shard, A., 2019. Sticky measurement problem: number concentration of agglomerated nanoparticles. En: Langmuir, 35(14), pp.4927–4935. https://doi.org/10.1021/acs.langmuir.8b04209.

National Institutes of Health y Laboratory for Optical and Computational Instrumentation, 2019. ImageJ [En linea]. Versión 1-8-0_112. Bethesda: NIH. [Consulta: 18 de mayo de 2020]. Disponible en: https://imagej.nih.gov/ij/download.html.

Nelson, B.C., Atha, D., Elliott, J., Marquis, B., Petersen, E., Cleveland, D., Watson, S., Tseng, I., Dillon, A., Theodore, M. y Jackman, J., 2013. NIST gold nanoparticle reference materials do not induce oxidative DNA damage. En:Nanotoxicology,7(1), pp.21–29. DOI:https://doi.org/10.3109/17435390.2011.626537.

OriginLab, 2020. Origin Lab [En linea]. Northampton: Originlab. [Consulta: 18 de mayo de 2020]. Disponible en:https://www.originlab.com/.

Rasmussen, K., Rauscher, H., Mech, A., Riego Sintes, J., Gillialand, D., Gonzales, M., Kearns, P., Moss, K., Visser, M., Groenewold, M. y Bleeker, E.A.J., 2018. Physico-chemical properties of manufactured nanomaterials - Characterisation and relevant methods. An outlook based on the OECD Testing Programme. En: Regulatory Toxicology and Pharmacology, 92, pp.8-28. https://doi.org/10.1016/j.yrtph.2017.10.019 .

Rice, S.B., Chan, C., Brown, S.C., Eschbach, P., Han, L., Ensor, D.S., Stefaniak, A.B., Bonevich, J., Vladár, A. E., Hight Walker, A.R., Zheng, J., Starnes, C., Stromberg, A., Ye, J. y Grulke, E.A., 2013. Particle size distributions by transmission electron microscopy: an interlaboratory comparison case study. En: Metrologia, 50(6), pp.663–678. https://doi.org/10.1088/0026-1394/50/6/663 .

Rogers, K.R., Navratilova, J., Stefaniak, A., Bowers, L., Knepp, A., Al-Abed, S., Potter, P., Gitipour, A., Radwan, I., Nelson, C. y Bradham, K., 2018. Characterization of engineered nanoparticles in commercially available spray disinfectant products advertised to contain colloidal silver. En:Science of the Total Environment, 619–620, pp.1375–1384. https://doi.org/10.1016/j.scitotenv.2017.11.195 .

Segelstein, D., 1981.The complex refractive index of water.Kansas City: University of Missouri.

Shard, A.G., Wright, L. y Minelli, C., 2018. Robust and accurate measurements of gold nanoparticle concentrations using UV-visible spectrophotometry. En:Biointerphases,13(6), p.061002. https://doi.org/10.1116/1.5054780.

Soliwoda, K., Rosowski, Marcin, Tomaszewska, Emilia, Tkacz-Szczesna, Beata, Celichowski, Grzegorz, Psarski, Maciej y Grobelny, Jaroslaw, 2015. Synthesis of monodisperse gold nanoparticles via electrospray-assisted chemical reduction method in cyclohexane. En: Colloids and Surfaces A: Physicochemical and Engineering Aspects, 482, pp.148–153. https://doi.org/10.1016/j.colsurfa.2015.04.040 .

Souza, T.G.F., Ciminelli, V.S.T. y Mohallem, N.D.S., 2016. A comparison of TEM and DLS methods to characterize size distribution of ceramic nanoparticles. En: Journal of Physics: Conference Series, 733(1). doi: https://doi.org/10.1088/1742-6596/733/1/012039 .

Tanaka, L.S., 2019. Regulación blanda, normas técnicas y armonización regulatoria internacional, para la nanotecnología. En: Mundo Nano, 13(24), pp.1-27. https://doi.org/10.22201/ceiich.24485691e.2020.24.69621 .

Turkevich, J., 1985. Colloidal gold. Part II. En:Gold Bull, 18, pp.125–131. doi: https://doi.org/10.1007/BF03214694.

Published

2020-10-23

How to Cite

Botasini, S. (2020). Comparison of the size of gold nanoparticles using different measurement techniques and protocols. INNOTEC, (21 ene-jun), 10–24. https://doi.org/10.26461/21.02

Issue

Section

Articles