Measuring technique implementation and first recording of greenhouse gases (CO2, CH4 and N2O) at the sediment-water interface in the Rincón del Bonete reservoir, Uruguay
DOI:
https://doi.org/10.26461/23.01Keywords:
Greenhouse effect, reservoir, methanogenesis, denitrification, organic matterAbstract
This work represents the first report carried out in Uruguay on the implementation of the technique to quantify greenhouse gases (GHG) and their diffusive fluxes through the sediment-water interface. The study was carry out in the Rincón del Bonete reservoir, located on the Río Negro. The applied technique made it possible to determine the GHG (CH4, CO2 and N2O) concentrations in the sediments. The CO2 and CH4 were the gases with the highest concentration per m2 of sediment. Regarding its diffusive fluxes, CO2 (max. = 1.198 mg/m2/d) was higher than CH4 (max. = 0.194 mg/m2/d) and N2O (max. = 0.02 mg/m2/ d). Although the values determined are low if compared to other systems, it would be necessary to deepen the temporal and spatial studies to better assess the magnitude of the GHG flows. Due to the increase in the intensity of human activities and the effects of climate change that would promote the increase and intensity of algal blooms, it expected that, after their decomposition, the release of GHG in the reservoir would increase in the future.
Downloads
References
Abe, D., Adams, D., Sidagis-Galli, C., Cimbleris, A. y Brum, P., 2005. Trophic classifications between temperate and tropical aquatic ecosystem: is such terminology unrealistic for sedimentary carbon cycling? En: University of Nairobi. 11th World Lakes Conference-Nairobi, Kenya. Management of Lake Basins for their Sustainable Use: Global Experience and African Issues. Abstracts volume. Nairobi: PASS, University of Nairobi. pp.105.
Abe, D. S.; Sidagis Galli, C.; Tundisi, T. M.; Tundisi, J. E. M.; Grimberg, D. E.; Medeiros, G. R.; Teixeira-Silva, V.; Tundisi, J. G., 2009. The effect of eutrophication on greenhouse gas emissionsin three reservoirs of the Middle Tietê River, southeastern Brazil. En: Proceedings of the International Association of Theoretical and Applied Limnology, 30, pp. 822 - 825.
Abril, G., Guerin, F., Richard, S., Delmas, R., Galy-Lacaux, C., Gosse,P., Tremblay, A., Varfalvy, L., Dos Santos, M. y Matvienko, B., 2005. Carbon dioxide and methane emissions and the carbon budget of a 10-year old tropical reservoir (Petit Saut, French Guiana). En: Global Biogeochemical Cycles, 19, GB4007. DOI: https://doi.org/10.1029/2005GB002457
Adams, D., 1999. Methane, carbon dioxide and nitrogen gases in the superficial sediments of two Chilean reservoirs: diffusive fluxes at the sediment water interface. En: Rosa, L.P. y Dos Santos, M.A., eds., 1999. Dams and climate change. Rio de Janeiro: COPPE. pp. 50-77.
Adams, D. y Baudo R., 2001. Gases (NH4, CO2 and N2) and pore water chemistry in the surface sediments of Lake Orta, Italy, acidification effects on C and N gas cycling. En: Journal of Limnology, 60(1), pp.79-90. DOI: http://dx.doi.org/10.4081/jlimnol.2001.79
Adams, D. y Naguib, N., 1999. Carbon gas cycling in the sediments of Plußsee, a northern
German eutrophic lake and 16 nearby water bodies of Schleswig-Holstein. En: Archiv fur Hydrobiologie. Spec. Issues, 54, pp.91-104. DOI: https://doi.org/10.1080/05384680.1996.11904069
Adams, D., Vila, I., Pizzarro, J. y Salazar C., 2000. Gases in the sediments of two eutrophic Chilean reservoirs: Potential sediment oxygen demand and sediment-water flux of CH4 and CO2 before and after an El Niño event. En: Verhandlungen des Internationalen Verein Limnologie 27(3), pp.1376-1381. DOI: https://doi.org/10.1080/03680770.1998.11901461
Andersen, J., 1976. An ignition method for determination of total phosphorus in lake sediments. En: Water Research, 10(4), pp.329-331. DOI: https://doi.org/10.1016/0043-1354(76)90175-5
American Public Health Association, American Water Works Association y Water Environment Federation, 2005a. Standard methods for the examination of water and wastewater. 21a ed. Washington: APHA. Standard Method 4500-PT-E, Approved 1997-Rev. 2011.
American Public Health Association, American Water Works Association y Water Environment Federation, 2005b. Standard methods for the examination of water and wastewater. 21a ed. Washington: APHA. Standard Method 4500-P-E, Approved 1997-Rev. 2011.
American Public Health Association, American Water Works Association y Water Environment Federation, 2005c. Standard methods for the examination of water and wastewater. 21a ed. Washington: APHA. Standard Method 4500-NO3-E, Approved 1997-Rev. 2011.
American Public Health Association, American Water Works Association y Water Environment Federation, 2005d. Standard methods for the examination of water and wastewater. 21a ed. Washington: APHA. Standard Method 4500-NH4-F, Approved 1997-Rev. 2011.
American Public Health Association, American Water Works Association y Water Environment Federation, 2005e. Standard methods for the examination of water and wastewater. 21a ed. Washington: APHA. Standard Method 2540-D, Approved 1997-Rev. 2011.
American Public Health Association, American Water Works Association y Water Environment Federation, 2005f. Standard methods for the examination of water and wastewater. 21a ed. Washington: APHA. Standard Method 2540-E, Approved 1997-Rev. 2011.
Barros, N., Cole, J., Tranvik, L., Prairie, Y., Bastviken, D., Huszar, V., Del Giorgio, P. y Roland F., 2011. Carbon emission from hydroelectric reservoirs linked to reservoir age and latitude. En: Nature Geoscience, 4(9), pp.593-596. DOI: https://doi.org/10.1038/ngeo1211
Bonilla, S., Haakonsson, S., Somma, A., Gravier, A., Britos, A., Vidal, L., De León, L., Brena, B., Pírez, M., Piccini, C., Martínez de la Escalera, G., Chalar, G., González-Piana, M., Martigani, F. y Aubriot, L., 2015. Cianobacterias y cianotoxinas en ecosistemas límnicos de Uruguay. En: INNOTEC 10, pp.9 - 22. DOI: https://doi.org/10.26461/10.01
Bižić, M. (Bizic), Klintzsch, T., Ionescu, D., Hindiyeh, M.Y., Günthel, M., Muro-Pastor, A.M., Eckert, W., Urich, T., Keppler, F. y Grossart, H., 2020. Aquatic and terrestrial cyanobacteria produce methane. En: Science Advisor, 6(3), eaax5343. DOI: https://doi.org/10.1126/sciadv.aax5343
Brasil. Ministério de Minas e Energia, 2012. Estado da arte em ciclo do carbono em reservatórios – Revisão bibliográfica. Rio de Janeiro: MME. 237p.
Casciotti, K.L. y Buchwald, C., 2012. Insights on the marine microbial nitrogen cycle from isotopic approaches to nitrification. En: Frontiers in Microbiology, 3, pp.1-14. DOI: https://doi.org/10.3389/fmicb.2012.00356
Castro-González, M. y Torres-Valdés, V., 2015. Gases invernadero en aguas con bajo oxígeno en el reservorio eutrófico de Prado (Colombia). En: Revista Académica Colombiana de Ciencias Exactas Físicas y Naturales, 39(152), pp.399-407. DOI: https://doi.org/10.18257/raccefyn.228
Ciais, P. y Sabine, C., 2013. The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. En: Stocker, T.F., Qin, D., Plattner, G.K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V. y Midgleyl, P.M., eds., 2013. Climate Change 2013. Cap. 6. Cambridge: Cambridge University Press.
Chalar, G., Fabián, D., González-Piana, M. y Delbene, L., 2010. Limnología de los embalses del Río Negro: Noviembre 2000 - Marzo 2009 [En línea]. Montevideo: Sección Limnología, Facultad de Ciencias, Udelar. [Consulta: 12 de enero 2022]. Disponible en: http://limno.fcien.edu.uy/pactuales/Rio%20Negro%20Inforrme%202000-2009.pdf
Chalar, G., Gerhard, M., González-Piana, M. y Fabián, D., 2014., Hidroquímica y eutrofización en tres embalses subtropicales en cadena. En: Marcovecchio, J.E., Botté, S.E. y Freije, R.H., eds., 2014. Procesos geoquímicos superficiales en Sudamérica. Salamanca: Nueva Graficesa. pp.121-148.
Chalar, G., Fabián, D., González-Piana, M. y Piccardo, A., 2015. Informe interanual. Estado y evolución de la calidad de agua de los tres embalses del Río Negro: Convenio UTE- Facultad de Ciencias. Período setiembre 2011 - Marzo 2015. Montevideo: Sección Limnología, Facultad de Ciencias, Udelar. [Consulta: 12 de enero 2022]. Disponible en:
Chorus, I., Bartram, J., 1999. Toxic cyanobacteria in water: a guide to their public health consequences monitoring and management. Londres: E. & FN Spon.
Cole, J., Prairie, Y., Caraco, N., Mcdowell, W., Tranvik, L., Striegl, R., Duarte, C., Kortelainen, P., Downing, J., Middelburg, J. y Melack, J., 2007. Plumbing the global carbon cycle: Integrating inland waters into the terrestrial carbon budget. En: Ecosystems, 10(1), pp.171-184.
Donis, D., Flury, S., Stöckli, A., Spangenberg, J., Vachon, D. y McGinnis, D., 2017. Full-scale evaluation of methane production under oxic conditions in a mesotrophic lake. En: Nature Communications, 8, pp.1661. DOI: https://doi.org/10.1038/s41467-017-01648-4
Fearnside, P., 2005. Do hydroelectric dams mitigate global warming? The case of Brazil´s Curuá-Una dam. En: Mitigation and Adaptation Strategies to Global Change, 10, pp.675-691. DOI: https://doi.org/10.1007/s11027-005-7303-7
Galy-Lacaux, C., Delmas, R., Kouadio, G., Richard, S. y Gosse, P., 1999. Long-term greenhouse gas emissions from hydroelectric reservoirs in tropical forest regions. En: Global Biogeochemicals Cycles, 13(2), pp.503-517. DOI: https://doi.org/10.1029/1998GB900015
González-Piana, M., Fabián, D., Delbene, L. y Chalar, G., 2011. Toxics blooms of Microcystis aeruginosa in three Rio Negro reservoirs, Uruguay. En: Harmful Algae News, 43, pp.16-17.
González-Piana, M., Fabián, D., Piccardo, A. y Chalar, G., 2017. Dynamics of total microcystin LR concentration in three subtropical hydroelectric generation reservoirs in Uruguay, South America. En: Bulletin of Enviromental Contamination and Toxicology, 99(4), pp.488-492. DOI: https://doi.org/10.1007/s00128-017-2158-7
González-Piana, M., Piccardo, A., Ferrer, C., Brena, B., Pirez, M., Fabián, D. y Chalar, G., 2018. Effects of wind mixing in a stratified water column on toxic cyanobacteria and Microcystin-LR distribution in a subtropical reservoir. En: Boulletin of Enviromental Contamination and Toxicology, 101(5), pp.611-616. DOI: https://doi.org/10.1007/s00128-018-2446-x
Guérin, F. y Abril, G., 2007. Significance of pelagic aerobic methane oxidation in the methane and carbon budget of a tropical reservoir. En: Journal of Geophysical Research-Biogeosciences, 112(G03006). DOI: https://doi.org/10.1029/2006JG000393
Günthel, M., Donis, D., Kirillin, G., Ionescu, D., Bizic, M., McGinnis, D.F., Grossart, H. y Tang, K., 2019. Contribution of oxic methane production to surface methane emission in lakes and its global importance. En: Nature Communication, 10, pp.5497. DOI: https://doi.org/10.1038/s41467-019-13320-0
Gruca-Roksz, R., Tomaszek, A., Koszelnik, P. y Czerwieniec, E., 2010. Methane and carbon dioxide fluxes at the sediments-water interface in reservoirs En: Polish Journal of Enviromental Study, 20, pp.81-86.
Huttunen, J., Väisänen, T., Hellsten, S. y Martikainen, P., 2006. Methane fluxes at the sediment-water interface in some boreal lakes and reservoirs. En: Boreal Enviromental Research, 11, pp.7-34.
International Organization for Standardization, 1992. 10260: Water quality. Measurement of biochemical parameters. Spectrometric determination of the chlorophyll-a concentration. Geneva: ISO.
Kiene, N.P. 1991. Production and consumption of methane in aquatic systems. En: Rogers, J.E. y Whitmann, W.B., ed. Microbial production and consumption of greenhouse gases: methane, nitrogen oxide and halomethanes. Washington: American Society for Microbiology. pp.111-146.
Klintzsch, T., Langer, G., Nehrke, G., Wieland, A., Lenhart, K. y Keppler, F., 2019. Methane production by three widespread marine phytoplankton species: release rates, precursor compounds, and potential relevance for the environment. En: Biogeosciences, 16, pp.4129-4144. DOI: https://doi.org/10.5194/bg-16-4129-2019
Kuivila, K., Murray, J., Devol, A., Lidstrom, M. y Reimers C., 1988. Methane cycling in the sediments of lake Washington. En: Limnology Oceanography, 33(4), pp.571-581. DOI: https://doi.org/10.4319/lo.1988.33.4.0571
Liikanen, A., Huttunen, J., Valli, K. y Martikainen, P., 2002. Methane cycling in the sediment and water column of mid-boreal hyper-eutrophic Lake Kevätön Finland. En: Archiev fur Hidrobiologische, 154(4), pp.585-603. DOI: 10.1127/archiv-hydrobiol/154/2002/585
León-Palmero, E., Contreras-Ruiz, A., Sierra, A., Morales-Baquero, R. y Reche, I., 2020. Dissolved CH4 coupled to photosynthetic picoeukaryotes in oxic waters and cumulative chlorophyll-a in anoxic waters of reservoirs. En: Biogeoscience, 17(12), pp.3223-3245. DOI: http://dx.doi.org/10.5194/bg-17-3223-2020
Lenhart, K., Klintzsch, T., Langer, G., Nehrke, G., Bunge, M., Schnell, S. y Keppler, F., 2016. Evidence for methane production by the marine algae Emiliania huxleyi. En: Biogeosciences, 13(10), pp.3163-3174. DOI: https://doi.org/10.5194/bg-13-3163-2016
Lovley, D. y Klug, M., 1983. Sulfate reducers can outcompete methanogens at freshwater sulfate concentration. En: Applied Environmental Microbiology, 45(1), pp.187-192.
Maeck, A., Del Sontro, T., Mc Ginnis, D., Fischer, H., Flury, S., Schmidt, M., Fietzek, P. y Lorke, A. 2013. Sediment trapping by dams creates methane emission hot spots. En: Enviromental Science & Technology, 47, pp.8130-8137. DOI: https://doi.org/10.1021/es4003907
Melack, J.M., 1996. Recent developments in tropical limnology. En: Verhandlungen des Internationalen Verein Limnologie, 26, pp.211–217. DOI: https://doi.org/10.1080/03680770.1995.11900704
Paerl, H. y Otten, T., 2013. Harmful cyanobacterial blooms: causes, consequences
and functions. En: Microbial Ecology 65(4), pp.995-1010. DOI: /10.1007/s00248-012-0159-y
Panhniban, A., Patt T., Hart, W. y Hanson, R., 1979. Oxidation of methane in the absence of oxygen in lake water samples. En: Applied Enviromental Microbiology, 66, pp.1126-1132. DOI: 10.1128/aem.37.2.303-309.1979
Peeters, F., Encinas Fernandez, J. y Hofmann, H., 2019. Sediment fluxes rather than oxic methanogenesis explain diffusive CH4 emissions from lakes and reservoirs. En: Scientific Reports, 9, p 243. DOI: https://doi.org/10.1038/s41598-018-36530-w
Rolletschek, H., 1997. Temporal and spatial variations in methane cycling in Lake Müggelsee.
En: Archiv fur Hydrobiologie, 140(2), pp.195-206. DOI: https://doi.org/10.1127/archiv-hydrobiol/140/1997/195
Salas, H. y Martino P., 1990. Metodologías simplificadas para la evaluación de la eutrofización en lagos cálidos tropicales. Lima: CEPIS/HPE/OPS.
Sidagis Galli, C., Abe, D., Tundisi, J., Texiera-Silva, V., Medeiros, G., Brum, P. y Cimbleris, A., 2009. Greenhouse gas concentrations and diffusive flux at the sediment-water interface from two reservoirs in Brazil. En: Verhandlungen des Internationalen Verein Limnologie 30, pp.830-833. DOI: https://doi.org/10.1080/03680770.2009.11902250
Sweerts, J., Rudd, J. y Kelly, C., 1996. Metabolic activities in flocculent surface sediments and underlying sandy littoral sediments. En: Limnology Oceanography, 31(2), pp.330-338. DOI:
https://doi.org/10.4319/lo.1986.31.2.0330
Smith, K., Ball, T., Conen, F., Dobbie, K., Massheder, J. y Rey, A., 2003. Exchange of greenhouse gases between soil and atmosphere: Interactionsof soil physical factors and biological processes. En: European Journal of Soil Science, 54, pp.779-791. DOI:
https://doi.org/10.1111/ejss.12538
Utsumi, M., NoriJi, Y., Nakamura T., Nozawa T., Otsuki A., Takamura N., Watanabe M. y Seki, H., 1998. Dynamics of dissolved methane and methane oxidation in dimictic lake Nojiri during winter. En: Limnology Oceanography, 43(1), pp.10-17. DOI: https://doi.org/10.4319/lo.1998.43.1.0010
Valderrama, J., 1981. The simultaneous analysis of total nitrogen and total phosphorus in natural waters. En: Marine Chemistry, 10(2), pp.109-122. DOI: https://doi.org/10.1016/0304-4203(81)90027-X
Wang, Q., Dore, J. y McDermott, T., 2017. Methylphosphonate metabolism by Pseudomonas sp. populations contributes to the methane oversaturation paradox in an oxic freshwater lake: Methylphosphonate and aquatic CH 4 oversaturation. En: Environmental Microbiology, 19, pp. 2366–2378. DOI: https://doi.org/10.1111/1462-2920.13747
Yao, M., Henny, C. y Maresca, J., 2016. Freshwater bacteria release methane as a by-product of phosphorus acquisition. En: Applied Environmental Microbiology, 82, pp.6994–7003. DOI: https://doi.org/10.1128/AEM.02399-16
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Corina Sidagis Galli, Donato Seiji Abe, Mauricio González-Piana, Sol De Giacomi Juri, Andrea Piccardo, Julieta Cuevas, Guillermo Chalar Marquizá
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Los autores del manuscrito declaran conocer y aceptar los siguientes términos de responsabilidad:
Haber participado lo suficiente en el trabajo como para hacer pública la responsabilidad por su contenido.
Que el manuscrito representa un trabajo original que no fue publicado ni está siendo considerado por otra revista para su publicación, en parte o en forma íntegra, tanto impresa como electrónica.
Que en caso de ser solicitado, procurará o cooperará en la obtención y suministro de datos sobre los cuales el manuscrito esté basado.
Declara que la información divulgada que pudiera pertenecer a un tercero cuenta con la autorización correspondiente.
Autorización para la publicación y compromiso de cita de primera publicación
Los autores/as conservan los derechos de autor y ceden a la revista INNOTEC / INNOTEC Gestión el derecho de la primera publicación, con el trabajo registrado con la licencia de atribución Creative Commons Reconocimiento-NoComercial 4.0 Internacional. Creative Commons, que permite a terceros utilizar lo publicado siempre que mencionen la autoría del trabajo y a la primera publicación en esta revista sin fines comerciales.
El autor se compromete a realizar la cita completa de la edición institucional de esta primer publicación en las siguientes publicaciones -completas o parciales- efectuadas en cualquier otro medio de divulgación, impreso o electrónico.
Los autores/as pueden realizar otros acuerdos contractuales no comerciales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en esta revista (p. ej., incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en esta revista.
Se permite a los autores/as publicar su trabajo en Internet (por ejemplo en páginas institucionales o personales) antes y durante el proceso de revisión, ya que puede conducir a intercambios productivos y a una mayor y más rápida difusión del trabajo publicado (vea The Effect of Open Access). A su vez los autores/as autorizan al LATU a publicar el trabajo en su repositorio digital.
Los conceptos y opiniones vertidos en los artículos son de responsabilidad de sus autores.
Este obra está bajo una licencia Reconocimiento-NoComercial 4.0 Internacional.