Measuring technique implementation and first recording of greenhouse gases (CO2, CH4 and N2O) at the sediment-water interface in the Rincón del Bonete reservoir, Uruguay

Authors

DOI:

https://doi.org/10.26461/23.01

Keywords:

Greenhouse effect, reservoir, methanogenesis, denitrification, organic matter

Abstract

This work represents the first report carried out in Uruguay on the implementation of the technique to quantify greenhouse gases (GHG) and their diffusive fluxes through the sediment-water interface. The study was carry out in the Rincón del Bonete reservoir, located on the Río Negro. The applied technique made it possible to determine the GHG (CH4, CO2 and N2O) concentrations in the sediments. The CO2 and CH4 were the gases with the highest concentration per m2 of sediment. Regarding its diffusive fluxes, CO2 (max. = 1.198 mg/m2/d) was higher than CH4 (max. = 0.194 mg/m2/d) and N2O (max. = 0.02 mg/m2/ d). Although the values ​​determined are low if compared to other systems, it would be necessary to deepen the temporal and spatial studies to better assess the magnitude of the GHG flows. Due to the increase in the intensity of human activities and the effects of climate change that would promote the increase and intensity of algal blooms, it expected that, after their decomposition, the release of GHG in the reservoir would increase in the future.

Downloads

Download data is not yet available.

References

Abe, D., Adams, D., Sidagis-Galli, C., Cimbleris, A. y Brum, P., 2005. Trophic classifications between temperate and tropical aquatic ecosystem: is such terminology unrealistic for sedimentary carbon cycling? En: University of Nairobi. 11th World Lakes Conference-Nairobi, Kenya. Management of Lake Basins for their Sustainable Use: Global Experience and African Issues. Abstracts volume. Nairobi: PASS, University of Nairobi. pp.105.

Abe, D. S.; Sidagis Galli, C.; Tundisi, T. M.; Tundisi, J. E. M.; Grimberg, D. E.; Medeiros, G. R.; Teixeira-Silva, V.; Tundisi, J. G., 2009. The effect of eutrophication on greenhouse gas emissionsin three reservoirs of the Middle Tietê River, southeastern Brazil. En: Proceedings of the International Association of Theoretical and Applied Limnology, 30, pp. 822 - 825.

Abril, G., Guerin, F., Richard, S., Delmas, R., Galy-Lacaux, C., Gosse,P., Tremblay, A., Varfalvy, L., Dos Santos, M. y Matvienko, B., 2005. Carbon dioxide and methane emissions and the carbon budget of a 10-year old tropical reservoir (Petit Saut, French Guiana). En: Global Biogeochemical Cycles, 19, GB4007. DOI: https://doi.org/10.1029/2005GB002457

Adams, D., 1999. Methane, carbon dioxide and nitrogen gases in the superficial sediments of two Chilean reservoirs: diffusive fluxes at the sediment water interface. En: Rosa, L.P. y Dos Santos, M.A., eds., 1999. Dams and climate change. Rio de Janeiro: COPPE. pp. 50-77.

Adams, D. y Baudo R., 2001. Gases (NH4, CO2 and N2) and pore water chemistry in the surface sediments of Lake Orta, Italy, acidification effects on C and N gas cycling. En: Journal of Limnology, 60(1), pp.79-90. DOI: http://dx.doi.org/10.4081/jlimnol.2001.79

Adams, D. y Naguib, N., 1999. Carbon gas cycling in the sediments of Plußsee, a northern

German eutrophic lake and 16 nearby water bodies of Schleswig-Holstein. En: Archiv fur Hydrobiologie. Spec. Issues, 54, pp.91-104. DOI: https://doi.org/10.1080/05384680.1996.11904069

Adams, D., Vila, I., Pizzarro, J. y Salazar C., 2000. Gases in the sediments of two eutrophic Chilean reservoirs: Potential sediment oxygen demand and sediment-water flux of CH4 and CO2 before and after an El Niño event. En: Verhandlungen des Internationalen Verein Limnologie 27(3), pp.1376-1381. DOI: https://doi.org/10.1080/03680770.1998.11901461

Andersen, J., 1976. An ignition method for determination of total phosphorus in lake sediments. En: Water Research, 10(4), pp.329-331. DOI: https://doi.org/10.1016/0043-1354(76)90175-5

American Public Health Association, American Water Works Association y Water Environment Federation, 2005a. Standard methods for the examination of water and wastewater. 21a ed. Washington: APHA. Standard Method 4500-PT-E, Approved 1997-Rev. 2011.

American Public Health Association, American Water Works Association y Water Environment Federation, 2005b. Standard methods for the examination of water and wastewater. 21a ed. Washington: APHA. Standard Method 4500-P-E, Approved 1997-Rev. 2011.

American Public Health Association, American Water Works Association y Water Environment Federation, 2005c. Standard methods for the examination of water and wastewater. 21a ed. Washington: APHA. Standard Method 4500-NO3-E, Approved 1997-Rev. 2011.

American Public Health Association, American Water Works Association y Water Environment Federation, 2005d. Standard methods for the examination of water and wastewater. 21a ed. Washington: APHA. Standard Method 4500-NH4-F, Approved 1997-Rev. 2011.

American Public Health Association, American Water Works Association y Water Environment Federation, 2005e. Standard methods for the examination of water and wastewater. 21a ed. Washington: APHA. Standard Method 2540-D, Approved 1997-Rev. 2011.

American Public Health Association, American Water Works Association y Water Environment Federation, 2005f. Standard methods for the examination of water and wastewater. 21a ed. Washington: APHA. Standard Method 2540-E, Approved 1997-Rev. 2011.

Barros, N., Cole, J., Tranvik, L., Prairie, Y., Bastviken, D., Huszar, V., Del Giorgio, P. y Roland F., 2011. Carbon emission from hydroelectric reservoirs linked to reservoir age and latitude. En: Nature Geoscience, 4(9), pp.593-596. DOI: https://doi.org/10.1038/ngeo1211

Bonilla, S., Haakonsson, S., Somma, A., Gravier, A., Britos, A., Vidal, L., De León, L., Brena, B., Pírez, M., Piccini, C., Martínez de la Escalera, G., Chalar, G., González-Piana, M., Martigani, F. y Aubriot, L., 2015. Cianobacterias y cianotoxinas en ecosistemas límnicos de Uruguay. En: INNOTEC 10, pp.9 - 22. DOI: https://doi.org/10.26461/10.01

Bižić, M. (Bizic), Klintzsch, T., Ionescu, D., Hindiyeh, M.Y., Günthel, M., Muro-Pastor, A.M., Eckert, W., Urich, T., Keppler, F. y Grossart, H., 2020. Aquatic and terrestrial cyanobacteria produce methane. En: Science Advisor, 6(3), eaax5343. DOI: https://doi.org/10.1126/sciadv.aax5343

Brasil. Ministério de Minas e Energia, 2012. Estado da arte em ciclo do carbono em reservatórios – Revisão bibliográfica. Rio de Janeiro: MME. 237p.

Casciotti, K.L. y Buchwald, C., 2012. Insights on the marine microbial nitrogen cycle from isotopic approaches to nitrification. En: Frontiers in Microbiology, 3, pp.1-14. DOI: https://doi.org/10.3389/fmicb.2012.00356

Castro-González, M. y Torres-Valdés, V., 2015. Gases invernadero en aguas con bajo oxígeno en el reservorio eutrófico de Prado (Colombia). En: Revista Académica Colombiana de Ciencias Exactas Físicas y Naturales, 39(152), pp.399-407. DOI: https://doi.org/10.18257/raccefyn.228

Ciais, P. y Sabine, C., 2013. The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. En: Stocker, T.F., Qin, D., Plattner, G.K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V. y Midgleyl, P.M., eds., 2013. Climate Change 2013. Cap. 6. Cambridge: Cambridge University Press.

Chalar, G., Fabián, D., González-Piana, M. y Delbene, L., 2010. Limnología de los embalses del Río Negro: Noviembre 2000 - Marzo 2009 [En línea]. Montevideo: Sección Limnología, Facultad de Ciencias, Udelar. [Consulta: 12 de enero 2022]. Disponible en: http://limno.fcien.edu.uy/pactuales/Rio%20Negro%20Inforrme%202000-2009.pdf

Chalar, G., Gerhard, M., González-Piana, M. y Fabián, D., 2014., Hidroquímica y eutrofización en tres embalses subtropicales en cadena. En: Marcovecchio, J.E., Botté, S.E. y Freije, R.H., eds., 2014. Procesos geoquímicos superficiales en Sudamérica. Salamanca: Nueva Graficesa. pp.121-148.

Chalar, G., Fabián, D., González-Piana, M. y Piccardo, A., 2015. Informe interanual. Estado y evolución de la calidad de agua de los tres embalses del Río Negro: Convenio UTE- Facultad de Ciencias. Período setiembre 2011 - Marzo 2015. Montevideo: Sección Limnología, Facultad de Ciencias, Udelar. [Consulta: 12 de enero 2022]. Disponible en:

http://limno.fcien.edu.uy/pactuales/EUTROFIZACION-Y-CALIDAD-DE-AGUA-DE-LOS-EMBALSES-DEL-RIO-NEGRO-2011-2015.pdf

Chorus, I., Bartram, J., 1999. Toxic cyanobacteria in water: a guide to their public health consequences monitoring and management. Londres: E. & FN Spon.

Cole, J., Prairie, Y., Caraco, N., Mcdowell, W., Tranvik, L., Striegl, R., Duarte, C., Kortelainen, P., Downing, J., Middelburg, J. y Melack, J., 2007. Plumbing the global carbon cycle: Integrating inland waters into the terrestrial carbon budget. En: Ecosystems, 10(1), pp.171-184.

Donis, D., Flury, S., Stöckli, A., Spangenberg, J., Vachon, D. y McGinnis, D., 2017. Full-scale evaluation of methane production under oxic conditions in a mesotrophic lake. En: Nature Communications, 8, pp.1661. DOI: https://doi.org/10.1038/s41467-017-01648-4

Fearnside, P., 2005. Do hydroelectric dams mitigate global warming? The case of Brazil´s Curuá-Una dam. En: Mitigation and Adaptation Strategies to Global Change, 10, pp.675-691. DOI: https://doi.org/10.1007/s11027-005-7303-7

Galy-Lacaux, C., Delmas, R., Kouadio, G., Richard, S. y Gosse, P., 1999. Long-term greenhouse gas emissions from hydroelectric reservoirs in tropical forest regions. En: Global Biogeochemicals Cycles, 13(2), pp.503-517. DOI: https://doi.org/10.1029/1998GB900015

González-Piana, M., Fabián, D., Delbene, L. y Chalar, G., 2011. Toxics blooms of Microcystis aeruginosa in three Rio Negro reservoirs, Uruguay. En: Harmful Algae News, 43, pp.16-17.

González-Piana, M., Fabián, D., Piccardo, A. y Chalar, G., 2017. Dynamics of total microcystin LR concentration in three subtropical hydroelectric generation reservoirs in Uruguay, South America. En: Bulletin of Enviromental Contamination and Toxicology, 99(4), pp.488-492. DOI: https://doi.org/10.1007/s00128-017-2158-7

González-Piana, M., Piccardo, A., Ferrer, C., Brena, B., Pirez, M., Fabián, D. y Chalar, G., 2018. Effects of wind mixing in a stratified water column on toxic cyanobacteria and Microcystin-LR distribution in a subtropical reservoir. En: Boulletin of Enviromental Contamination and Toxicology, 101(5), pp.611-616. DOI: https://doi.org/10.1007/s00128-018-2446-x

Guérin, F. y Abril, G., 2007. Significance of pelagic aerobic methane oxidation in the methane and carbon budget of a tropical reservoir. En: Journal of Geophysical Research-Biogeosciences, 112(G03006). DOI: https://doi.org/10.1029/2006JG000393

Günthel, M., Donis, D., Kirillin, G., Ionescu, D., Bizic, M., McGinnis, D.F., Grossart, H. y Tang, K., 2019. Contribution of oxic methane production to surface methane emission in lakes and its global importance. En: Nature Communication, 10, pp.5497. DOI: https://doi.org/10.1038/s41467-019-13320-0

Gruca-Roksz, R., Tomaszek, A., Koszelnik, P. y Czerwieniec, E., 2010. Methane and carbon dioxide fluxes at the sediments-water interface in reservoirs En: Polish Journal of Enviromental Study, 20, pp.81-86.

Huttunen, J., Väisänen, T., Hellsten, S. y Martikainen, P., 2006. Methane fluxes at the sediment-water interface in some boreal lakes and reservoirs. En: Boreal Enviromental Research, 11, pp.7-34.

International Organization for Standardization, 1992. 10260: Water quality. Measurement of biochemical parameters. Spectrometric determination of the chlorophyll-a concentration. Geneva: ISO.

Kiene, N.P. 1991. Production and consumption of methane in aquatic systems. En: Rogers, J.E. y Whitmann, W.B., ed. Microbial production and consumption of greenhouse gases: methane, nitrogen oxide and halomethanes. Washington: American Society for Microbiology. pp.111-146.

Klintzsch, T., Langer, G., Nehrke, G., Wieland, A., Lenhart, K. y Keppler, F., 2019. Methane production by three widespread marine phytoplankton species: release rates, precursor compounds, and potential relevance for the environment. En: Biogeosciences, 16, pp.4129-4144. DOI: https://doi.org/10.5194/bg-16-4129-2019

Kuivila, K., Murray, J., Devol, A., Lidstrom, M. y Reimers C., 1988. Methane cycling in the sediments of lake Washington. En: Limnology Oceanography, 33(4), pp.571-581. DOI: https://doi.org/10.4319/lo.1988.33.4.0571

Liikanen, A., Huttunen, J., Valli, K. y Martikainen, P., 2002. Methane cycling in the sediment and water column of mid-boreal hyper-eutrophic Lake Kevätön Finland. En: Archiev fur Hidrobiologische, 154(4), pp.585-603. DOI: 10.1127/archiv-hydrobiol/154/2002/585

León-Palmero, E., Contreras-Ruiz, A., Sierra, A., Morales-Baquero, R. y Reche, I., 2020. Dissolved CH4 coupled to photosynthetic picoeukaryotes in oxic waters and cumulative chlorophyll-a in anoxic waters of reservoirs. En: Biogeoscience, 17(12), pp.3223-3245. DOI: http://dx.doi.org/10.5194/bg-17-3223-2020

Lenhart, K., Klintzsch, T., Langer, G., Nehrke, G., Bunge, M., Schnell, S. y Keppler, F., 2016. Evidence for methane production by the marine algae Emiliania huxleyi. En: Biogeosciences, 13(10), pp.3163-3174. DOI: https://doi.org/10.5194/bg-13-3163-2016

Lovley, D. y Klug, M., 1983. Sulfate reducers can outcompete methanogens at freshwater sulfate concentration. En: Applied Environmental Microbiology, 45(1), pp.187-192.

Maeck, A., Del Sontro, T., Mc Ginnis, D., Fischer, H., Flury, S., Schmidt, M., Fietzek, P. y Lorke, A. 2013. Sediment trapping by dams creates methane emission hot spots. En: Enviromental Science & Technology, 47, pp.8130-8137. DOI: https://doi.org/10.1021/es4003907

Melack, J.M., 1996. Recent developments in tropical limnology. En: Verhandlungen des Internationalen Verein Limnologie, 26, pp.211–217. DOI: https://doi.org/10.1080/03680770.1995.11900704

Paerl, H. y Otten, T., 2013. Harmful cyanobacterial blooms: causes, consequences

and functions. En: Microbial Ecology 65(4), pp.995-1010. DOI: /10.1007/s00248-012-0159-y

Panhniban, A., Patt T., Hart, W. y Hanson, R., 1979. Oxidation of methane in the absence of oxygen in lake water samples. En: Applied Enviromental Microbiology, 66, pp.1126-1132. DOI: 10.1128/aem.37.2.303-309.1979

Peeters, F., Encinas Fernandez, J. y Hofmann, H., 2019. Sediment fluxes rather than oxic methanogenesis explain diffusive CH4 emissions from lakes and reservoirs. En: Scientific Reports, 9, p 243. DOI: https://doi.org/10.1038/s41598-018-36530-w

Rolletschek, H., 1997. Temporal and spatial variations in methane cycling in Lake Müggelsee.

En: Archiv fur Hydrobiologie, 140(2), pp.195-206. DOI: https://doi.org/10.1127/archiv-hydrobiol/140/1997/195

Salas, H. y Martino P., 1990. Metodologías simplificadas para la evaluación de la eutrofización en lagos cálidos tropicales. Lima: CEPIS/HPE/OPS.

Sidagis Galli, C., Abe, D., Tundisi, J., Texiera-Silva, V., Medeiros, G., Brum, P. y Cimbleris, A., 2009. Greenhouse gas concentrations and diffusive flux at the sediment-water interface from two reservoirs in Brazil. En: Verhandlungen des Internationalen Verein Limnologie 30, pp.830-833. DOI: https://doi.org/10.1080/03680770.2009.11902250

Sweerts, J., Rudd, J. y Kelly, C., 1996. Metabolic activities in flocculent surface sediments and underlying sandy littoral sediments. En: Limnology Oceanography, 31(2), pp.330-338. DOI:

https://doi.org/10.4319/lo.1986.31.2.0330

Smith, K., Ball, T., Conen, F., Dobbie, K., Massheder, J. y Rey, A., 2003. Exchange of greenhouse gases between soil and atmosphere: Interactionsof soil physical factors and biological processes. En: European Journal of Soil Science, 54, pp.779-791. DOI:

https://doi.org/10.1111/ejss.12538

Utsumi, M., NoriJi, Y., Nakamura T., Nozawa T., Otsuki A., Takamura N., Watanabe M. y Seki, H., 1998. Dynamics of dissolved methane and methane oxidation in dimictic lake Nojiri during winter. En: Limnology Oceanography, 43(1), pp.10-17. DOI: https://doi.org/10.4319/lo.1998.43.1.0010

Valderrama, J., 1981. The simultaneous analysis of total nitrogen and total phosphorus in natural waters. En: Marine Chemistry, 10(2), pp.109-122. DOI: https://doi.org/10.1016/0304-4203(81)90027-X

Wang, Q., Dore, J. y McDermott, T., 2017. Methylphosphonate metabolism by Pseudomonas sp. populations contributes to the methane oversaturation paradox in an oxic freshwater lake: Methylphosphonate and aquatic CH 4 oversaturation. En: Environmental Microbiology, 19, pp. 2366–2378. DOI: https://doi.org/10.1111/1462-2920.13747

Yao, M., Henny, C. y Maresca, J., 2016. Freshwater bacteria release methane as a by-product of phosphorus acquisition. En: Applied Environmental Microbiology, 82, pp.6994–7003. DOI: https://doi.org/10.1128/AEM.02399-16

Published

2022-03-03

How to Cite

Sidagis Galli, C., Seiji Abe, D., González-Piana, M., De Giacomi Juri, S., Piccardo, A., Cuevas, J., & Chalar Marquizá, G. (2022). Measuring technique implementation and first recording of greenhouse gases (CO2, CH4 and N2O) at the sediment-water interface in the Rincón del Bonete reservoir, Uruguay. INNOTEC, (23 ene-jun), e582. https://doi.org/10.26461/23.01

Issue

Section

Articles

Most read articles by the same author(s)