Implementação da técnica de medição e primeiro registro de gases de efeito estufa (CO2, CH4 e N2O) na interface sedimento-água no reservatório Rincón del Bonete, Uruguay

Autores

DOI:

https://doi.org/10.26461/23.01

Palavras-chave:

Efeito estufa, reservatório, metanogênese, desnitrificação, matéria orgânica

Resumo

Este trabalho representa o primeiro relatório realizado no Uruguai sobre a implementação da técnica de quantificação de gases de efeito estufa (GEE) e seus fluxos difusivos através da interface sedimento-água. O estudo foi realizado no reservatório Rincón del Bonete, localizado no Rio Negro. A técnica aplicada permitiu determinar as concentrações de GEE (CH4, CO2 e N2O) nos sedimentos. CO2 e CH4 foram os gases com maior concentração por m2 de sedimento. Em relação aos seus fluxos difusivos, CO2 (máx. = 1,198 mg/m2/d) foi maior que CH4 (máx. = 0,194 mg/m2/d) e N2O (máx. = 0,02 mg/m2/d). Embora os valores apurados sejam baixos em comparação com outros sistemas, seria necessário aprofundar os estudos temporais e espaciais para melhor avaliar a magnitude dos fluxos de GEE. Devido ao aumento da intensidade das atividades humanas e dos efeitos das mudanças climáticas que promovem o aumento e a intensidade das florações de algas, seria de se esperar que, após sua decomposição, a liberação de GEE no reservatório aumentasse no futuro.

Downloads

Não há dados estatísticos.

Referências

Abe, D., Adams, D., Sidagis-Galli, C., Cimbleris, A. y Brum, P., 2005. Trophic classifications between temperate and tropical aquatic ecosystem: is such terminology unrealistic for sedimentary carbon cycling? En: University of Nairobi. 11th World Lakes Conference-Nairobi, Kenya. Management of Lake Basins for their Sustainable Use: Global Experience and African Issues. Abstracts volume. Nairobi: PASS, University of Nairobi. pp.105.

Abe, D. S.; Sidagis Galli, C.; Tundisi, T. M.; Tundisi, J. E. M.; Grimberg, D. E.; Medeiros, G. R.; Teixeira-Silva, V.; Tundisi, J. G., 2009. The effect of eutrophication on greenhouse gas emissionsin three reservoirs of the Middle Tietê River, southeastern Brazil. En: Proceedings of the International Association of Theoretical and Applied Limnology, 30, pp. 822 - 825.

Abril, G., Guerin, F., Richard, S., Delmas, R., Galy-Lacaux, C., Gosse,P., Tremblay, A., Varfalvy, L., Dos Santos, M. y Matvienko, B., 2005. Carbon dioxide and methane emissions and the carbon budget of a 10-year old tropical reservoir (Petit Saut, French Guiana). En: Global Biogeochemical Cycles, 19, GB4007. DOI: https://doi.org/10.1029/2005GB002457

Adams, D., 1999. Methane, carbon dioxide and nitrogen gases in the superficial sediments of two Chilean reservoirs: diffusive fluxes at the sediment water interface. En: Rosa, L.P. y Dos Santos, M.A., eds., 1999. Dams and climate change. Rio de Janeiro: COPPE. pp. 50-77.

Adams, D. y Baudo R., 2001. Gases (NH4, CO2 and N2) and pore water chemistry in the surface sediments of Lake Orta, Italy, acidification effects on C and N gas cycling. En: Journal of Limnology, 60(1), pp.79-90. DOI: http://dx.doi.org/10.4081/jlimnol.2001.79

Adams, D. y Naguib, N., 1999. Carbon gas cycling in the sediments of Plußsee, a northern

German eutrophic lake and 16 nearby water bodies of Schleswig-Holstein. En: Archiv fur Hydrobiologie. Spec. Issues, 54, pp.91-104. DOI: https://doi.org/10.1080/05384680.1996.11904069

Adams, D., Vila, I., Pizzarro, J. y Salazar C., 2000. Gases in the sediments of two eutrophic Chilean reservoirs: Potential sediment oxygen demand and sediment-water flux of CH4 and CO2 before and after an El Niño event. En: Verhandlungen des Internationalen Verein Limnologie 27(3), pp.1376-1381. DOI: https://doi.org/10.1080/03680770.1998.11901461

Andersen, J., 1976. An ignition method for determination of total phosphorus in lake sediments. En: Water Research, 10(4), pp.329-331. DOI: https://doi.org/10.1016/0043-1354(76)90175-5

American Public Health Association, American Water Works Association y Water Environment Federation, 2005a. Standard methods for the examination of water and wastewater. 21a ed. Washington: APHA. Standard Method 4500-PT-E, Approved 1997-Rev. 2011.

American Public Health Association, American Water Works Association y Water Environment Federation, 2005b. Standard methods for the examination of water and wastewater. 21a ed. Washington: APHA. Standard Method 4500-P-E, Approved 1997-Rev. 2011.

American Public Health Association, American Water Works Association y Water Environment Federation, 2005c. Standard methods for the examination of water and wastewater. 21a ed. Washington: APHA. Standard Method 4500-NO3-E, Approved 1997-Rev. 2011.

American Public Health Association, American Water Works Association y Water Environment Federation, 2005d. Standard methods for the examination of water and wastewater. 21a ed. Washington: APHA. Standard Method 4500-NH4-F, Approved 1997-Rev. 2011.

American Public Health Association, American Water Works Association y Water Environment Federation, 2005e. Standard methods for the examination of water and wastewater. 21a ed. Washington: APHA. Standard Method 2540-D, Approved 1997-Rev. 2011.

American Public Health Association, American Water Works Association y Water Environment Federation, 2005f. Standard methods for the examination of water and wastewater. 21a ed. Washington: APHA. Standard Method 2540-E, Approved 1997-Rev. 2011.

Barros, N., Cole, J., Tranvik, L., Prairie, Y., Bastviken, D., Huszar, V., Del Giorgio, P. y Roland F., 2011. Carbon emission from hydroelectric reservoirs linked to reservoir age and latitude. En: Nature Geoscience, 4(9), pp.593-596. DOI: https://doi.org/10.1038/ngeo1211

Bonilla, S., Haakonsson, S., Somma, A., Gravier, A., Britos, A., Vidal, L., De León, L., Brena, B., Pírez, M., Piccini, C., Martínez de la Escalera, G., Chalar, G., González-Piana, M., Martigani, F. y Aubriot, L., 2015. Cianobacterias y cianotoxinas en ecosistemas límnicos de Uruguay. En: INNOTEC 10, pp.9 - 22. DOI: https://doi.org/10.26461/10.01

Bižić, M. (Bizic), Klintzsch, T., Ionescu, D., Hindiyeh, M.Y., Günthel, M., Muro-Pastor, A.M., Eckert, W., Urich, T., Keppler, F. y Grossart, H., 2020. Aquatic and terrestrial cyanobacteria produce methane. En: Science Advisor, 6(3), eaax5343. DOI: https://doi.org/10.1126/sciadv.aax5343

Brasil. Ministério de Minas e Energia, 2012. Estado da arte em ciclo do carbono em reservatórios – Revisão bibliográfica. Rio de Janeiro: MME. 237p.

Casciotti, K.L. y Buchwald, C., 2012. Insights on the marine microbial nitrogen cycle from isotopic approaches to nitrification. En: Frontiers in Microbiology, 3, pp.1-14. DOI: https://doi.org/10.3389/fmicb.2012.00356

Castro-González, M. y Torres-Valdés, V., 2015. Gases invernadero en aguas con bajo oxígeno en el reservorio eutrófico de Prado (Colombia). En: Revista Académica Colombiana de Ciencias Exactas Físicas y Naturales, 39(152), pp.399-407. DOI: https://doi.org/10.18257/raccefyn.228

Ciais, P. y Sabine, C., 2013. The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. En: Stocker, T.F., Qin, D., Plattner, G.K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V. y Midgleyl, P.M., eds., 2013. Climate Change 2013. Cap. 6. Cambridge: Cambridge University Press.

Chalar, G., Fabián, D., González-Piana, M. y Delbene, L., 2010. Limnología de los embalses del Río Negro: Noviembre 2000 - Marzo 2009 [En línea]. Montevideo: Sección Limnología, Facultad de Ciencias, Udelar. [Consulta: 12 de enero 2022]. Disponible en: http://limno.fcien.edu.uy/pactuales/Rio%20Negro%20Inforrme%202000-2009.pdf

Chalar, G., Gerhard, M., González-Piana, M. y Fabián, D., 2014., Hidroquímica y eutrofización en tres embalses subtropicales en cadena. En: Marcovecchio, J.E., Botté, S.E. y Freije, R.H., eds., 2014. Procesos geoquímicos superficiales en Sudamérica. Salamanca: Nueva Graficesa. pp.121-148.

Chalar, G., Fabián, D., González-Piana, M. y Piccardo, A., 2015. Informe interanual. Estado y evolución de la calidad de agua de los tres embalses del Río Negro: Convenio UTE- Facultad de Ciencias. Período setiembre 2011 - Marzo 2015. Montevideo: Sección Limnología, Facultad de Ciencias, Udelar. [Consulta: 12 de enero 2022]. Disponible en:

http://limno.fcien.edu.uy/pactuales/EUTROFIZACION-Y-CALIDAD-DE-AGUA-DE-LOS-EMBALSES-DEL-RIO-NEGRO-2011-2015.pdf

Chorus, I., Bartram, J., 1999. Toxic cyanobacteria in water: a guide to their public health consequences monitoring and management. Londres: E. & FN Spon.

Cole, J., Prairie, Y., Caraco, N., Mcdowell, W., Tranvik, L., Striegl, R., Duarte, C., Kortelainen, P., Downing, J., Middelburg, J. y Melack, J., 2007. Plumbing the global carbon cycle: Integrating inland waters into the terrestrial carbon budget. En: Ecosystems, 10(1), pp.171-184.

Donis, D., Flury, S., Stöckli, A., Spangenberg, J., Vachon, D. y McGinnis, D., 2017. Full-scale evaluation of methane production under oxic conditions in a mesotrophic lake. En: Nature Communications, 8, pp.1661. DOI: https://doi.org/10.1038/s41467-017-01648-4

Fearnside, P., 2005. Do hydroelectric dams mitigate global warming? The case of Brazil´s Curuá-Una dam. En: Mitigation and Adaptation Strategies to Global Change, 10, pp.675-691. DOI: https://doi.org/10.1007/s11027-005-7303-7

Galy-Lacaux, C., Delmas, R., Kouadio, G., Richard, S. y Gosse, P., 1999. Long-term greenhouse gas emissions from hydroelectric reservoirs in tropical forest regions. En: Global Biogeochemicals Cycles, 13(2), pp.503-517. DOI: https://doi.org/10.1029/1998GB900015

González-Piana, M., Fabián, D., Delbene, L. y Chalar, G., 2011. Toxics blooms of Microcystis aeruginosa in three Rio Negro reservoirs, Uruguay. En: Harmful Algae News, 43, pp.16-17.

González-Piana, M., Fabián, D., Piccardo, A. y Chalar, G., 2017. Dynamics of total microcystin LR concentration in three subtropical hydroelectric generation reservoirs in Uruguay, South America. En: Bulletin of Enviromental Contamination and Toxicology, 99(4), pp.488-492. DOI: https://doi.org/10.1007/s00128-017-2158-7

González-Piana, M., Piccardo, A., Ferrer, C., Brena, B., Pirez, M., Fabián, D. y Chalar, G., 2018. Effects of wind mixing in a stratified water column on toxic cyanobacteria and Microcystin-LR distribution in a subtropical reservoir. En: Boulletin of Enviromental Contamination and Toxicology, 101(5), pp.611-616. DOI: https://doi.org/10.1007/s00128-018-2446-x

Guérin, F. y Abril, G., 2007. Significance of pelagic aerobic methane oxidation in the methane and carbon budget of a tropical reservoir. En: Journal of Geophysical Research-Biogeosciences, 112(G03006). DOI: https://doi.org/10.1029/2006JG000393

Günthel, M., Donis, D., Kirillin, G., Ionescu, D., Bizic, M., McGinnis, D.F., Grossart, H. y Tang, K., 2019. Contribution of oxic methane production to surface methane emission in lakes and its global importance. En: Nature Communication, 10, pp.5497. DOI: https://doi.org/10.1038/s41467-019-13320-0

Gruca-Roksz, R., Tomaszek, A., Koszelnik, P. y Czerwieniec, E., 2010. Methane and carbon dioxide fluxes at the sediments-water interface in reservoirs En: Polish Journal of Enviromental Study, 20, pp.81-86.

Huttunen, J., Väisänen, T., Hellsten, S. y Martikainen, P., 2006. Methane fluxes at the sediment-water interface in some boreal lakes and reservoirs. En: Boreal Enviromental Research, 11, pp.7-34.

International Organization for Standardization, 1992. 10260: Water quality. Measurement of biochemical parameters. Spectrometric determination of the chlorophyll-a concentration. Geneva: ISO.

Kiene, N.P. 1991. Production and consumption of methane in aquatic systems. En: Rogers, J.E. y Whitmann, W.B., ed. Microbial production and consumption of greenhouse gases: methane, nitrogen oxide and halomethanes. Washington: American Society for Microbiology. pp.111-146.

Klintzsch, T., Langer, G., Nehrke, G., Wieland, A., Lenhart, K. y Keppler, F., 2019. Methane production by three widespread marine phytoplankton species: release rates, precursor compounds, and potential relevance for the environment. En: Biogeosciences, 16, pp.4129-4144. DOI: https://doi.org/10.5194/bg-16-4129-2019

Kuivila, K., Murray, J., Devol, A., Lidstrom, M. y Reimers C., 1988. Methane cycling in the sediments of lake Washington. En: Limnology Oceanography, 33(4), pp.571-581. DOI: https://doi.org/10.4319/lo.1988.33.4.0571

Liikanen, A., Huttunen, J., Valli, K. y Martikainen, P., 2002. Methane cycling in the sediment and water column of mid-boreal hyper-eutrophic Lake Kevätön Finland. En: Archiev fur Hidrobiologische, 154(4), pp.585-603. DOI: 10.1127/archiv-hydrobiol/154/2002/585

León-Palmero, E., Contreras-Ruiz, A., Sierra, A., Morales-Baquero, R. y Reche, I., 2020. Dissolved CH4 coupled to photosynthetic picoeukaryotes in oxic waters and cumulative chlorophyll-a in anoxic waters of reservoirs. En: Biogeoscience, 17(12), pp.3223-3245. DOI: http://dx.doi.org/10.5194/bg-17-3223-2020

Lenhart, K., Klintzsch, T., Langer, G., Nehrke, G., Bunge, M., Schnell, S. y Keppler, F., 2016. Evidence for methane production by the marine algae Emiliania huxleyi. En: Biogeosciences, 13(10), pp.3163-3174. DOI: https://doi.org/10.5194/bg-13-3163-2016

Lovley, D. y Klug, M., 1983. Sulfate reducers can outcompete methanogens at freshwater sulfate concentration. En: Applied Environmental Microbiology, 45(1), pp.187-192.

Maeck, A., Del Sontro, T., Mc Ginnis, D., Fischer, H., Flury, S., Schmidt, M., Fietzek, P. y Lorke, A. 2013. Sediment trapping by dams creates methane emission hot spots. En: Enviromental Science & Technology, 47, pp.8130-8137. DOI: https://doi.org/10.1021/es4003907

Melack, J.M., 1996. Recent developments in tropical limnology. En: Verhandlungen des Internationalen Verein Limnologie, 26, pp.211–217. DOI: https://doi.org/10.1080/03680770.1995.11900704

Paerl, H. y Otten, T., 2013. Harmful cyanobacterial blooms: causes, consequences

and functions. En: Microbial Ecology 65(4), pp.995-1010. DOI: /10.1007/s00248-012-0159-y

Panhniban, A., Patt T., Hart, W. y Hanson, R., 1979. Oxidation of methane in the absence of oxygen in lake water samples. En: Applied Enviromental Microbiology, 66, pp.1126-1132. DOI: 10.1128/aem.37.2.303-309.1979

Peeters, F., Encinas Fernandez, J. y Hofmann, H., 2019. Sediment fluxes rather than oxic methanogenesis explain diffusive CH4 emissions from lakes and reservoirs. En: Scientific Reports, 9, p 243. DOI: https://doi.org/10.1038/s41598-018-36530-w

Rolletschek, H., 1997. Temporal and spatial variations in methane cycling in Lake Müggelsee.

En: Archiv fur Hydrobiologie, 140(2), pp.195-206. DOI: https://doi.org/10.1127/archiv-hydrobiol/140/1997/195

Salas, H. y Martino P., 1990. Metodologías simplificadas para la evaluación de la eutrofización en lagos cálidos tropicales. Lima: CEPIS/HPE/OPS.

Sidagis Galli, C., Abe, D., Tundisi, J., Texiera-Silva, V., Medeiros, G., Brum, P. y Cimbleris, A., 2009. Greenhouse gas concentrations and diffusive flux at the sediment-water interface from two reservoirs in Brazil. En: Verhandlungen des Internationalen Verein Limnologie 30, pp.830-833. DOI: https://doi.org/10.1080/03680770.2009.11902250

Sweerts, J., Rudd, J. y Kelly, C., 1996. Metabolic activities in flocculent surface sediments and underlying sandy littoral sediments. En: Limnology Oceanography, 31(2), pp.330-338. DOI:

https://doi.org/10.4319/lo.1986.31.2.0330

Smith, K., Ball, T., Conen, F., Dobbie, K., Massheder, J. y Rey, A., 2003. Exchange of greenhouse gases between soil and atmosphere: Interactionsof soil physical factors and biological processes. En: European Journal of Soil Science, 54, pp.779-791. DOI:

https://doi.org/10.1111/ejss.12538

Utsumi, M., NoriJi, Y., Nakamura T., Nozawa T., Otsuki A., Takamura N., Watanabe M. y Seki, H., 1998. Dynamics of dissolved methane and methane oxidation in dimictic lake Nojiri during winter. En: Limnology Oceanography, 43(1), pp.10-17. DOI: https://doi.org/10.4319/lo.1998.43.1.0010

Valderrama, J., 1981. The simultaneous analysis of total nitrogen and total phosphorus in natural waters. En: Marine Chemistry, 10(2), pp.109-122. DOI: https://doi.org/10.1016/0304-4203(81)90027-X

Wang, Q., Dore, J. y McDermott, T., 2017. Methylphosphonate metabolism by Pseudomonas sp. populations contributes to the methane oversaturation paradox in an oxic freshwater lake: Methylphosphonate and aquatic CH 4 oversaturation. En: Environmental Microbiology, 19, pp. 2366–2378. DOI: https://doi.org/10.1111/1462-2920.13747

Yao, M., Henny, C. y Maresca, J., 2016. Freshwater bacteria release methane as a by-product of phosphorus acquisition. En: Applied Environmental Microbiology, 82, pp.6994–7003. DOI: https://doi.org/10.1128/AEM.02399-16

Publicado

2022-03-03

Como Citar

Sidagis Galli, C., Seiji Abe, D., González-Piana, M., De Giacomi Juri, S., Piccardo, A., Cuevas, J., & Chalar Marquizá, G. (2022). Implementação da técnica de medição e primeiro registro de gases de efeito estufa (CO2, CH4 e N2O) na interface sedimento-água no reservatório Rincón del Bonete, Uruguay. INNOTEC, (23 ene-jun), e582. https://doi.org/10.26461/23.01

Edição

Seção

Artículos

Artigos mais lidos pelo mesmo(s) autor(es)