Evaluate the effectiveness of brewer's yeast by-product of the brewing industry as a biostimulant in hydroponics

Authors

  • María Magdalena Vazquez Instituto de Investigaciones en Producción, Sanidad y Ambiente (IIPROSAM), Consejo Nacional de Investigaciones Científicas y Técnicas - Universidad Nacional de Mar del Plata, Mar del Plata, Argentina. https://orcid.org/0000-0001-8765-5322
  • Silvina Quintana Instituto de Investigaciones en Producción, Sanidad y Ambiente (IIPROSAM), Consejo Nacional de Investigaciones Científicas y Técnicas - Universidad Nacional de Mar del Plata, Mar del Plata, Argentina. https://orcid.org/0000-0003-1845-7677
  • Sandra Medici Instituto de Investigaciones en Producción, Sanidad y Ambiente (IIPROSAM), Consejo Nacional de Investigaciones Científicas y Técnicas - Universidad Nacional de Mar del Plata, Mar del Plata, Argentina. https://orcid.org/0000-0002-2465-2068
  • Liesel Brenda Gende Instituto de Investigaciones en Producción, Sanidad y Ambiente (IIPROSAM), Consejo Nacional de Investigaciones Científicas y Técnicas - Universidad Nacional de Mar del Plata, Mar del Plata, Argentina. https://orcid.org/0000-0002-8056-3510

DOI:

https://doi.org/10.26461/24.05

Keywords:

PGPM, sustainability, Arabidopsis thaliana, Eruca vesicaria, Lactuca sativa

Abstract

The ability of some microorganisms to stimulate the growth and development of plants is known. However, the use of residual yeast from the artisanal brewing industry as plant growth promoting agents (PGPM) has been briefly studied. The aim of this work was to characterize and analyze the use of residual yeast from the brewing industry in hydroponic vegetable crops. We evaluated the effects of yeast addition on plant growth of Eruca vesicaria, Arabidopsis thaliana y Lactuca sativa with this technique. A significant increase in the principal root length was observed after the treatment with the yeast suspensions in A. thaliana and E. vesicaria grown relative to the control (SN 4.28 ± 0.15, S05 7.30 ± 0.29; SN 39.68 ± 2.20, S05 57.37 ± 2.80, respectively). In floating hydroponic systems, yeast inoculation to the hydroponic solution increased the root area of ​​L. sativa by 30% in relation to the control. Our results confirm that Saccharomyces cerevisiae strain J14 from the brewing industry may confer benefits in hydroponics crops with positive effects on root growth. These results validate the potential application of S. cerevisiae strain J14 in plant cultivation in hydroponic as a biotechnological tool.

Downloads

Download data is not yet available.

References

Abdul Ameer, M. A. y Hussein, H. F., 2020. Induction of Rhizophagy by yeast Saccharomyces cerevisiae in roots of lettuce Lactuca sativa roots of lettuce Lactuca sativa. En: J. Phys.: Conf. Ser., 1664(1), 012116. DOI: http://dx.doi.org/10.1088/1742-6596/1664/1/012116

Abhilash, P.C., Dubey R.K., Tripathi, V., Gupta, V.K. y Singh, H.B., 2016. Plant growth-promoting microorganisms for environmental sustainability. En: Trends Biotechnol, 34(11), pp.847–850. DOI: https://doi.org/10.1016/j.tibtech.2016.05.005

Abhilash, P.C., Tripathi, V., Edrisi, S.A. Gupta, V.K. y Singh, H.B., 2019. Sustainability of crop production from polluted lands. En: Energ. Ecol. Environ., 1, pp.54-65. DOI: https://doi.org/10.1007/s40974-016-0007-x

Amprayn, K., Rose, M. T., Kecskés, M., Pereg, L., Thanh, H. y Kennedy, I.R., 2012. Plant growth promoting characteristics of soil yeast (Candida tropicalis HY) and its effectiveness for promoting rice growth. En: Appl. Soil Ecol., 61, pp.295-299. DOI: https://doi.org/10.1016/j.apsoil.2011.11.009

AOAC International, 1984. Official Methods of Analysis of AOAC International. 14a ed. Washington: AOAC. Official Method 2.062.

AOAC International, 1998. Official Methods of Analysis of AOAC International. 15a ed. Washington: AOAC. Official Method 942.05.

Baras, T., 2018. DIY hydroponic gardens: how to design and build an inexpensive system for growing plants in water. Beverly: Cool Springs Press. ISBN-10: 0760357595.

Bedolla-Torres, M. H., Palacios, A., Palacios, O. A., Choix, F. J., Jesús F. De, Valle A., López, D.R., Luis, J., Villavicencio, E., Luna, R. De, Trujillob, A. G., Avila Serranod, N. Y. y Ortega Pérez, R., 2015. La irrigación con levaduras incrementa el contenido nutricional del forraje verde hidropónico de maíz. En: Rev Argent Microbiol., 47(3), pp. 236-244. DOI: https://doi.org/10.1016/j.ram.2015.04.002

Bekuma, A., 2019. Nutritional benefit and economic value of hydroponics fodder production technology in sustainable livestock production against climate change – a mini-review. En: Adv. Appl. Sci., 4(1), pp.23-25.

Bewley, J. D. y Black M. eds., 1982. Physiology and biochemistry of seeds in relation to germination. Vol. 1. Development, germination and growth. Berlin: Springer Verlag. ISBN: 978-3-642-68643-6.

Boratyn, M. G., Camacho, C., Cooper, P. S., Coulouris, G., Fong, A., Ma, N., Madden, T. L., Matten, W.T., McGinnis, S. D., Merezhuk, Y., Raytselis, Y., Sayers, R.W., Tao, Ye J. y Zaretskaya, I., 2013. BLAST: a more efficient report with usability improvements. En: Nucleic Acids Research, 41(1), pp. 29–33, DOI: https://doi.org/10.1093/nar/gkt282

Cloete, K. J., Valentine, A. J., Stander, M. A., Blomerus, L. M. y Botha, A., 2009. Evidence of symbiosis between the soil yeast Cryptococcus laurentii and a sclerophyllous medicinal shrub, Agathosma betulina (Berg.) Pillans. En: Microb Ecol., 57(4), pp. 624-32. DOI: https://doi.org/10.1007/s00248-008-9457-9

Compant, S., Samad, A., Faist, H. y Sessitsch, A. A review on the plant microbiome: Ecology, functions and emerging trends in microbial applications. En: J. Adv., 19, pp. 29–37. DOI: https://doi.org/10.1016/j.jare.2019.03.004

El-Tarabily, K. A. y Sivasithamparam, K., 2006. Potential of yeasts as biocontrol agents of soil-borne fungal plant pathogens and as plant growth promoters. En: Mycoscience, 47, pp. 25–35. DOI: https://doi.10.1007/s10267-005-0268-2

Falih, A. M. y Wainwright, M., 1995. Nitrification, S-oxidation and P-solubilization by the soil yeast Williopsis californica and by Saccharomyces cerevisiae. En: Mycol Res, 99(2), pp. 200-204. DOI: https://doi.org/10.1016/S0953-7562(09)80886-1

Freimoser, F. M., Paula, M., Mejia, R., Tilocca, B. y Migheli, Q., 2019. Biocontrol yeasts: mechanisms and applications. En: World J Microbiol Biotechnol, 35(10), pp.154. DOI: https://doi.org/10.1007/s11274-019-2728-4

Glick, B. R., 2012. Plant growth-promoting bacteria: mechanisms and applications. En: Scientifica, ID 963401. DOI: https://doi.org/10.6064/2012/963401

Gómez Alonso, S., Gutiérrez, I. H. y García-Romero, E., 2007. Simultaneus HPLC Analysis of Biogenic Amines, amino acids and ammonium ion as aminoenone derivates in wine and beer samples. En: J. Agric. Food Chem., 55(3), pp. 608-613. DOI: https://doi.org/10.1021/jf062820m

GraphPad, 2007. Prism. Vers. 1992-2007 5.01. San Diego: GraphPad Sofware, Inc.

Hardoim, P. R., van Overbeek, L. S., Berg, G., Pirttilä, A. M., Compant, S. y Campisano, A. 2015. The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. En: Microbiol Mol Biol Rev, 79(3), pp. 293-320. DOI: https://doi.org/10.1128%2FMMBR.00050-14

Joshi, M., Vaishnava, C. S. y Sharma, S. K., 2018. Economical analysis of feeding hydroponics maize fodder with and without supplementation of probiotic (Saccharomyces Cerevisae) in gir calves. En: Int. J. Sci. Environ. Technol, 7(3), pp. 809-814. ISSN 2278-3687

Kurtzman, C. P. y Robnett, C. J., 1997. Identification of clinically important ascomycetous yeasts based on nucleotide divergence in the 59 end of the large-subunit (26S) ribosomal DNA gene. En: J. Clin. Microbiol, 35(5), pp. 1216–1223. DOI: https://doi.org/10.1128/jcm.35.5.1216-1223.1997

Lonhienne, T., Mason, M. G., Raganm M. A., Hugenholtz, P., Schmidt y S., Paungfoo-lonhienne, C., 2015. Yeast as a biofertilizer alters plant growth and morphology. En: Crop Sci., 54(2), pp.785–790. DOI: https://doi.org/10.2135/cropsci2013.07.0488

Malamy, J. E. y Benfey, P.N., 1997. Organization and cell differentiation in lateral roots of Arabidopsis thaliana. En: Development, 124(1), pp. 33–44. DOI: https://doi.org/10.1242/dev.124.1.33

Martínez-Mate, M. A., Martin-Gorriz, B., Martínez-Álvarez, V., Soto-García, M., Maestre-Valero, J. F. y 2018. Hydroponic system and desalinated seawater as an alternative farm-productive proposal in water scarcity areas: energy and greenhouse gas emissions analysis of lettuce production in southeast Spain. En: J Clean Prod, 172, pp.1298–310. DOI: https://doi.org/10.1016/j.jclepro.2017.10.275

Marulanda, C. e Izquierdo, J., 2003. La huerta hidropónica popular [En línea]. Santiago: FAO. [Consulta: 1 de noviembre 2022]. Disponible en: https://www.fao.org/3/ah501s/ah501s.pdf

Mukherjee, A., Verma, J. P. y Hesham, A. E., 2020. Yeast a potential bio-agent: future for plant growth and postharvest disease management for sustainable agriculture. En: Appl Microbiol Biotechnol Yeast, 104(4), pp. 1497-1510. DOI: https://doi.org/10.1007/s00253-019-10321-3

Naamala, J. y Smith, D. L., 2020. Relevance of plant growth promoting microorganisms and their derived compounds, in the face of climate change. En: Agronomy, 10(8), pp. 1179. DOI: https://doi.org/10.3390/agronomy10081179

Nassar, A., El-Tarabily, K. A. y Sivasithamparam, K., 2005. Promotion of plant growth by an auxin-producing isolate of the yeast Williopsis saturnus endophytic in maize (Zea mays L.) roots. En: Biol Fertil Soils, 42, pp. 97–108. DOI: https://doi.org/10.1007/s00374-005-0008-y

Nutaratat, P., Srisuk, N., Arunrattiyakorn, P. y Limtong, S., 2014. Plant growth-promoting traits of epiphytic and endophytic yeasts isolated from rice and sugar cane leaves in Thailand. En: Fungal Biol, 118(8), pp. 683–94. DOI: https://doi.org/10.1016/j.funbio.2014.04.010

Olajire, A. A., 2012. The brewing industry and environmental challenges. En: J Clean Prod, 256, 102817. DOI: https://doi.org/10.1016/j.jclepro.2012.03.003

Paradiso, R., Arena, C., Miccom V. De, Giordano, M., Aronne, G. y Pascale, S. De., 2017. Changes in leaf anatomical traits enhanced photosynthetic activity of soybean grown in hydroponics with plant growth-promoting. En: Front. Plant Sci, 8, 674. DOI: http://doi: 10.3389/fpls.2017.00674

Philippot, L., Raaijmakers, J. M., Lemanceau, P., Putten, W. H. V. D., 2013. Going back to the roots: the microbial ecology of the rhizosphere. En: Rev. Microbiol., 11, pp. 789–799. DOI: https://doi.org/10.1038/nrmicro3109

Ramayo Cruz, P., 2018. Aprovechamiento de subproductos derivados de la elaboración de cerveza artesanal. Trabajo presentado para optar al título del máster universitario en gestión de calidad y trazabilidad en alimentos de origen vegetal [En línea]. Badajoz: Universidad de Extremadura. [Consulta: 1 de marzo de 2022]. Disponible en: https://dehesa.unex.es/handle/10662/8081

Resh, M. H., 2015. Hydroponics for the home grower. Boca Ratón: CRC Press. DOI: https://doi.org/10.1201/b18069

Rincón Reyna, J. F., Rincón Reyna, P. G., Torres Maravilla, E., Mondragón Rojas, A. G., Sánchez Pardo, M. E., Arana Cuenca, A., Ortiz Moreno, A., Jiménez García, E., 2016. Caracterización fisicoquímica y funcional de la fibra de mesocarpio de coco (Cocos nucifera L.) [En línea]. En: Investigación y Desarrollo en Ciencia y Tecnología de Alimentos, 1(2), pp. 279-284. [Consulta: 1 de noviembre de 2022]. Disponible en: http://www.fcb.uanl.mx/IDCyTA/files/volume1/2/3/49.pdf

Sambo, P., Nicoletto, C., Giro, A., Pii, Y., Valentinuzzi, F., Mimmo, T., Lugli, P., Orzes, G., Mazzetto, F., Astolfi, S., Terzano, R. y Cesco, S., 2019. Hydroponic solutions for soilless production systems: issues and opportunities in a smart agriculture perspective. En: Front. Plant Sci., 10, pp.923. DOI: https://doi.org/10.3389/fpls.2019.00923

Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch S., Rueden C., Saalfeld S., Schmid B, Tinevez J-Y, White DJ., Hartenstein V, Eliceiri K., Tomancak P. y Cardona, A., 2012. Fiji: an open-source platform for biological-image analysis. En: Nat Methods, 9, pp. 676–682. DOI: https://doi.org/10.1038/nmeth.2019

Smart, K., Chambers, M., Lambert, I., Jenkins, C. y Smart, C.A., 1999. Use of methylene violet staining procedures to determine yeast viability and vitality. En: J Am Soc Brew Chem, 57(1), pp. 18-23. DOI: https://doi.org/10.1094/ASBCJ-57-0018

Villanueva, N. S., 2021. Mecanismos de inducción de rizobios para reducir el estrés por sequía en las leguminosas. En: Revista de Investigaciones Altoandinas, 23(4), pp. 258-265. DOI: https://dx.doi.org/10.18271/ria.2021.263

Weigel, D. y Glazebrook, J., eds., 2002. Arabidopsis: a laboratory manual. New York: Cold Spring Harbor Laboratory Press. ISBN-10: 0879695730.

Yam, K. L. y Papadakis, S. E., 2004. A simple digital imaging method for measuring and analyzing color of food surfaces. En: J. Food Process Eng., 61, pp.137–142. DOI: https://doi.org/10.1016/S0260-8774(03)00195-X

Published

2022-12-20

How to Cite

Vazquez, M. M., Quintana, S. ., Medici, S. ., & Gende , L. B. . (2022). Evaluate the effectiveness of brewer’s yeast by-product of the brewing industry as a biostimulant in hydroponics . INNOTEC, (24 jul-dic), e622. https://doi.org/10.26461/24.05

Issue

Section

Articles