Relationship between convergence fronts and location of the coastal fleet during the occurrence of coastal upwelling in Uruguay

Authors

  • Camila de Mello Departamento de Ciencias de la Atmósfera y Física de los Océanos, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay https://orcid.org/0000-0002-4492-4892
  • Marcelo Barreiro Departamento de Ciencias de la Atmósfera y Física de los Océanos, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay https://orcid.org/0000-0002-7819-1607
  • Yamandú Marin Dirección Nacional de Recursos Acuáticos, Montevideo, Uruguay https://orcid.org/0000-0002-7483-8063
  • Leonardo Ortega Dirección Nacional de Recursos Acuáticos, Montevideo, Uruguay https://orcid.org/0000-0002-1254-2822
  • Romina Trinchin Departamento de Ciencias de la Atmósfera y Física de los Océanos, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay https://orcid.org/0000-0003-0511-0586
  • Gastón Manta Departamento de Ciencias de la Atmósfera y Física de los Océanos, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay https://orcid.org/0000-0002-3089-4733

DOI:

https://doi.org/10.26461/24.03

Keywords:

CROCO model, fishing effort, Lyapunov exponents

Abstract

The Uruguayan coast presents upwelling events during the summer, its implications on the distribution, transport of nutrients and organisms; and their effects on the entire food web, have not been previously analyzed. This work seeks to understand the relationship between the upwelling events and the location of the Uruguayan coastal industrial fleet (B Category). Finite Size Lyapunov Exponents (FSLE) were computed from surface current velocity fields. The temporal averages of these exponents indicate the mixing intensity and presented higher values over the region of more intense upwelling. On the other hand, the maximum FSLE values identify convergence fronts. The fronts identified by this methodology correspond to the turbidity front and close to Montevideo, and temperature fronts directly associated with the upwelling event. During the event, these fronts migrated from the coast, to the southwest and offshore. The location of the frontal regions detected was compared with the satellite position (VMS) of B Category coastal vessels of the Uruguayan fishing fleet. In general, the vessels were positioned on the frontal zones, suggesting a relationship between retention processes and the location of target species; and evidencing the need to deepen the study of these processes.

Downloads

Download data is not yet available.

References

Acha, E.M., Mianzan, H., Guerrero, R., Carreto, J., Giberto, D., Montoya, N. y Carignan, M., 2008. An overview of physical and ecological processes in the Rio de la Plata Estuary. En: Continental Shelf Research, 28(13), pp.1579-1588. DOI: https://doi.org/10.1016/j.csr.2007.01.031

Amante, C. y Eakins, B., 2009. ETOPO1 1 arc-minute global relief model: procedures, data sources and analysis [En línea]. Colorado: NOAA. (NOAA Technical Memorandum NESDIS NGDC-24). [Consulta: 22 de octubre de 2022]. Disponible en: https://www.researchgate.net/profile/Christopher-Amante/publication/228077300_ETOPO1_1_Arc-Minute_Global_Relief_Model_procedures_data_sources_and_analysis/links/59f77930458515547c24c805/ETOPO1-1-Arc-Minute-Global-Relief-Model-procedures-data-sources-and-analysis.pdf

Aurell, E., Boffetta, G., Crisanti, A., Paladin, G. y Vulpiani, A., 1997. Predictability in the large: an extension of the concept of Lyapunov exponent. En: Journal of Physics A: Mathematical and General, 30(1). DOI: https://doi.org/10.1088/0305-4470/30/1/003

Austin, J.A. y Lentz, S.J., 2002. The inner shelf response to wind-driven upwelling and downwelling. En: Journal of Physical Oceanography, 32(7), pp.2171-2193. DOI: https://doi.org/10.1175/1520-0485(2002)032%3C2171:TISRTW%3E2.0.CO;2

Barreiro, M., 2010. Influence of ENSO and the South Atlantic Ocean on climate predictability over Southeastern South America. En: Climate Dynamics, 35(7-8), pp.1493-1508. DOI: https://doi.org/10.1007/s00382-009-0666-9

Berta, M., Ursella, L., Nencioli, F., Doglioli, A.M., Petrenko, A.A. y Cosoli, S., 2014. Surface transport in the Northeastern Adriatic Sea from FSLE analysis of HF radar measurements. En: Continental Shelf Research, 77(1), pp.14-23. DOI: https://doi.org/10.1016/j.csr.2014.01.016

Boffetta, G., Lacorata., G., Redaelli, G. y Vulpiani. A., 2001. Detecting barriers to transport: a review of different techniques. En: Physica D., 158, pp.58–70. DOI: https://doi.org/10.1016/S0167-2789(01)00330-X

Chin, T.M., Vazquez-Cuervo, J. y Armstrong, E.M., 2017. A multi-scale high-resolution analysis of global sea surface temperature. En: Remote sensing of environment, 200, pp.154-169. DOI: https://doi.org/10.1016/j.rse.2017.07.029

Cotté, C., d’Ovidio, F., Dragon, A.C., Guinet, C. y Lévy, M., 2015. Flexible preference of southern elephant seals for distinct mesoscale features within the Antarctic Circumpolar Current. En: Progress in Ocean, 131, pp.46–58. DOI: https://doi.org/10.1016/j.pocean.2014.11.011

Da Silva, A.M., Young, C.C. y Levitus, S., 1994. Atlas of surface marine data. s.l.: NOAA [Consulta: 05 de mayo de 2021]. Disponible en: https://www.croco-ocean.org/download/datasets/

Debreu, L., Marchesiello, P., Penven, P. y Cambon, G., 2012. Two-way nesting in split-explicit ocean models: algorithms, implementation and validation. En: Ocean Modelling, 49, pp.1-21. DOI: https://doi.org/10.1016/j.ocemod.2012.03.003

de Mello, C., Barreiro, M., Ortega, L., Trinchin, R. y Manta, G., 2022. Coastal upwelling along the Uruguayan coast: Structure, variability and drivers. En: Journal of Marine Systems, 230, 103735. DOI: https://doi.org/10.1016/j.jmarsys.2022.103735

de Mello, C., Barreiro, M., Hernández-García, E., Trinchin, R. y Manta, G., en prensa. A Lagrangian study of summer upwelling along the Uruguayan coast. En: Continental Shelf Research.

D’Onofrio, E.E., Fiore, M.M. y Romero, S.I., 1999. Return periods of extreme water levels estimated for some vulnerable areas of Buenos Aires. En: Continental Shelf Research, 19(13), pp.1681-1693. DOI: https://doi.org/10.1016/S0278-4343(98)00115-0

d’Ovidio, F., Fernández, V., Hernández‐García, E. y López, C., 2004. Mixing structures in the Mediterranean Sea from finite size Lyapunov exponents. En: Geophysical Research Letters, 31(17), L17203. DOI: https://doi.org/10.1029/2004GL020328

d’Ovidio, F., Isern-Fontanet, J., López, C., Hernández-García, E. y García-Ladona, E., 2009. Comparison between Eulerian diagnostics and finite-size Lyapunov exponents computed from altimetry in the Algerian basin. En: Deep Sea Research Part I: Oceanographic Research Papers, 56(1), pp.15-31. DOI: https://doi.org/10.1016/j.dsr.2008.07.014

Framiñan, M.B., Etala, M. Acha, R., Guerrero, R., Lasta, C. y Brown, O., 1999. Physical characteristics and processes of the Río de la Plata Estuary. En: Perillo, G., Piccolo, M. y Quivira, M., ed. Estuaries of South America: their morphology and dynamics. Berlin: Springer. pp.161–194. DOI: https://doi.org/10.1007/978-3-642-60131-6_8

Galan, A., Orfila, A., Simarro, G., Hernández-Carrasco, I. y López, C., 2012. Wave mixing rise inferred from Lyapunov exponents. En: Environmental Fluid Mechanics, 12(3), pp.291-300. DOI: https://doi.org/10.1007/s10652-012-9238-3

Gómez-Erache, M., Vizziano, D., Nuñez, Nagy, G. y Lagomarsino. J., 2001. Producción fitoplanctónica en la zona frontal del Rio de la Plata. En: Vizziano, D., Puig, P., Mesones, C., Nagy, G.J., ed. Río de la Plata: investigación para la gestión del ambiente, los recursos pesqueros y la pesquería en el frente salino. Montevideo: Programa Ecoplata.

Guerrero, R.A. y Piola, A.R., 1997. Masas de agua en la plataforma continental. En: Boschi, E.E., ed. El mar Argentino y sus recursos pesqueros. Tomo 1. Antecedentes históricos de las exploraciones en el mar y las características ambientales [En línea]. Mar del Plata: INIDEP. pp.107-118. [Consulta: 5 de agosto de 2022]. Disponible en: https://www.inidep.edu.ar/wordpress/?page_id=846

Guerrero, R.A., Acha, E.M., Framin, M.B. y Lasta, C.A., 1997. Physical oceanography of the Río de la Plata Estuary, Argentina. En: Continental Shelf Research, 17(7), pp.727–742. DOI: https://doi.org/10.1016/S0278-4343(96)00061-1

Guerrero, R.A., Piola, A.R., Molinari, G.N., Osiroff A.P. y Jáuregui, S.I., 2010. Climatología de temperatura y salinidad en el Río de la Plata y su frente marítimo Argentina-Uruguay. Mar del Plata: Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP). 95 p. ISBN 978-987-1443-03-1

Haller, G. y Yuan, G., 2000. Lagrangian coherent structures and mixing in two-dimensional turbulence. En: Physica D: Nonlinear Phenomena, 147(3-4), pp.352-370. DOI: https://doi.org/10.1016/S0167-2789(00)00142-1

Haney, R.L., 1991. On the pressure gradient force over steep topography in sigma coordinate ocean models [En línea]. En: Journal of physical Oceanography, 21(4), pp.610-619. [Consulta: 22 de octubre de 2022]. Disponible en: https://calhoun.nps.edu/handle/10945/46807

Hernández-Carrasco, I., López, C., Hernández-García, E. y Turiel, A., 2011. How reliable are finite-size Lyapunov exponents for the assessment of ocean dynamics? En: Ocean Modelling, 36(3-4), pp.208-218. DOI: https://doi.org/10.1016/j.ocemod.2010.12.006

Horta, S. y Defeo, O., 2012. The spatial dynamics of the whitemouth croaker artisanal fishery in Uruguay and interdependencies with the industrial fleet. En: Fisheries Research, 125–126, pp.121-128. DOI: https://doi.org/10.1016/j.fishres.2012.02.007

Jaureguizar, A., Cortés, F., Milessi, A., Cozzolino, E. y Allega, L., 2015. A trans-ecosystem fishery: Environmental effects on the small-scale gillnet fishery along the Río de la Plata boundary. En: Estuarine, Coastal and Shelf Science, 166, Part A, pp.92-104. DOI: https://doi.org/10.1016/j.ecss.2014.11.003

Joseph, B. y Legras, B., 2002. Relation between kinematic boundaries, stirring, and barriers for the Antarctic polar vortex. En: Journal of the Atmospheric Sciences, 59(7), pp.1198-1212. DOI: https://doi.org/10.1175/1520-0469(2002)059%3C1198:RBKBSA%3E2.0.CO;2

Kanamitsu, M., Ebisuzaki, W., Woollen, J., Yang, S.K., Hnilo, J.J., Fiorino, M. y Potter, G.L., 2002. En: Bulletin of the American Meteorological Society, 83(11), pp.1631-1643. DOI: http://dx.doi.org/10.1175/BAMS-83-11-1631

Koh, T.Y. y Legras, B., 2002. Hyperbolic lines and the stratospheric polar vortex. En: Chaos: An Interdisciplinary Journal of Nonlinear Science, 12(2), pp.382-394. DOI: https://doi.org/10.1063/1.1480442

Largier, J.L., 2020. Upwelling bays: how coastal upwelling controls circulation, habitat, and productivity in bays. En: Annual Review of Marine Science, 12, pp.415-447. DOI: https://doi.org/10.1146/annurev-marine-010419-011020

Lehahn, Y., d'Ovidio, F., Lévy, M. y Heifetz, E., 2007. Stirring of the northeast Atlantic spring bloom: A Lagrangian analysis based on multisatellite data. En: Journal of Geophysical Research: Oceans, 112(C8). DOI: https://doi.org/10.1029/2006JC003927

Lellouche, J.M., Le Galloudec, O., Greiner, E., Garric, G., Regnier, C., Drevillon, M. y Le Traon, P. Y., 2018. The Copernicus Marine Environment Monitoring Service global ocean 1/12° physical reanalysis GLORYS12V1: description and quality assessment [En línea]. En: EGU. 20th EGU General Assembly, EGU2018. Proceedings from the conference held 4-13 April, 2018 in Vienna, Austria. p.19806. [Consulta: 22 de octubre de 2022]. Disponible en: https://ui.adsabs.harvard.edu/abs/2018EGUGA..2019806L/abstract

Levitus, S., Locarnini, R.A., Boyer, T.P., Mishonov, A.V., Antonov, J.I., Garcia, H.E., Baranova, O., Zweng, M., Johnson, D. y Seidov, D., 2010. World ocean atlas 2009, WOA2009 [En línea]. Washington: NOAA. [Consulta: 05 de mayo de 2021]. Disponible en: https://www.croco-ocean.org/download/datasets/

Mackas, D.L., Tsurumi, M., Galbraith, M.D. y Yelland, D.R., 2005. Zooplankton distribution and dynamics in a North Pacific Eddy of coastal origin: II. Mechanisms of eddy colonization by and retention of offshore species. En: Deep Sea Research Part II: Topical Studies in Oceanography, 52(7-8), pp.1011-1035. DOI: https://doi.org/10.1016/j.dsr2.2005.02.008

Martínez, A. y Ortega, L., 2015. Delimitation of domains in the external Río de la Plata estuary, involving phytoplanktonic and hydrographic variables. En: Brazilian Journal of Oceanography, 63 (3), pp.217–227. DOI: https://doi.org/10.1590/S1679-87592015086106303

Meccia, V.L., Simionato, C.G. y Guerrero, R.A., 2013. The Rio de la Plata Estuary response to wind variability in synoptic timescale: salinity fields and salt wedge structure. En: Journal of Coastal Research, 29(1), pp.61–77. DOI: https://doi.org/10.2112/JCOASTRES-D-11-00063.1

Mesones, C., Puig, P. y Martínez. A., 2001. Relación de especies costeras con las características ambientales. En: Vizziano, D., Puig, P., Mesones, C. y Nagy, G.J., ed. Río de la Plata: investigación para la gestión del ambiente, los recursos pesqueros y la pesquería en el frente salino. Montevideo: Programa Ecoplata.

Moira, L.C., Simionato, C., Campetella, C., Moreira, D. y Guerrero, R., 2013. Surgencia, ¿Un fenómeno común en la costa norte del Río de la Plata exterior? En: Frente Marítimo, 23, pp.275-290.

Molcard, A., Poje, A.C. y Özgökmen, T.M., 2006. Directed drifter launch strategies for Lagrangian data assimilation using hyperbolic trajectories. En: Ocean Modelling, 12(3-4), pp.268-289. DOI: https://doi.org/10.1016/j.ocemod.2005.06.004

Nagy, G.J., Gómez-Erache, M., López, C.H. y Perdomo, A.C., 2002. Distribution patterns of nutrients and symptoms of eutrophication in the Rio de la Plata River Estuary System. En: Hydrobiologia, 475/476, pp.125-139. DOI: http://dx.doi.org/10.1023/A:1020300906000

Norbis, W., 1995. Influence of wind, behaviour and characteristics of the croaker (Micropogonias furnieri) artisanal fishery in the Rio de la Plata (Uruguay). En: Fisheries Research, 22(1–2), pp.43-58. ISSN 0165-7836. DOI: https://doi.org/10.1016/0165-7836(94)00310-S

Norbis, W., Paesch, L. y Galli. O., 2006. Los recursos pesqueros de la costa de Uruguay: ambiente, biología y gestión. En: Menafra, R. Rodríguez-Gallego, L. Scarabino, F. y Conde, D., eds. Bases para la conservación y el manejo de la costa uruguaya. Montevideo: Vida Silvestre Uruguay. 668 p.

Ortega, L. y Martínez, A., 2007. Multiannual and seasonal variability of water masses and fronts over the Uruguayan shelf. En: Journal of Coastal Research, 23(3), pp.618-629. DOI: https://doi.org/10.2112/04-0221.1

Oschlies, A. y Garcon, V., 1998. Eddy-induced enhancement of primary production in a model of the North Atlantic Ocean. En: Nature, 394(6690), pp.266-269. DOI: https://doi.org/10.1038/28373

Özgökmen, T.M., Griffa, A., Mariano, A.J. y Piterbarg, L.I., 2000. On the predictability of Lagrangian trajectories in the ocean [En línea]. En: Journal of Atmospheric and Oceanic Technology, 17(3), pp.366-383. [Consulta: 10 de agosto de 2022]. Disponible en: http://www.tamayozgokmen.org/ftp-pub/jmr04.pdf

Pauly, D. y Christensen, V., 1995. Primary production required to sustain global fisheries. En: Nature, 374(6519), pp.255-257. DOI: ttps://doi.org/10.1038/374255a0

Pimenta, F., Garvine, R. W. y Münchow, A., 2008. Observations of coastal upwelling off Uruguay downshelf of the Plata estuary, South America. En: Journal of Marine Research, 66(6), pp.835-872.

Piola, A.R., Matano, R.P., Palma, E.D., Möller Jr, O.O. y Campos, E.J., 2005. The influence of the Plata River discharge on the western South Atlantic shelf. En: Geophysical Research Letters, 32(1). DOI: https://doi.org/10.1029/2004GL021638

Pisciottano, G., Díaz, A., Cazess, G. y Mechoso, C.R., 1994. El niño-southern oscillation impact on rainfall in Uruguay. En: Journal of Climate, 7(8), pp.1286-1302. DOI: http://dx.doi.org/10.1175/1520-0442(1994)007%3C1286:ENSOIO%3E2.0.CO;2

Prants, S.V., Budyansky, M.V. y Uleysky, M.Y., 2014. Identifying Lagrangian fronts with favourable fishery conditions. En: Deep Sea Research Part I: Oceanographic Research Papers, 90, pp.27-35. DOI: https://doi.org/10.1175/1520-0442(1994)007%3C1286:ENSOIO%3E2.0.CO;2

Rossi, V., López, C., Sudre, J., Hernández‐García, E. y Garçon, V., 2008. Comparative study of mixing and biological activity of the Benguela and Canary upwelling systems. En: Geophysical Research Letters, 35(11). DOI: https://doi.org/10.1029/2008GL033610

Shchepetkin, A.F. y McWilliams, J.C., 1998. Quasi-monotone advection schemes based on explicit locally adaptive dissipation. En: Monthly Weather Review, 126(6), pp.1541-1580. DOI: https://doi.org/10.1175/1520-0493(1998)126<1541:QMASBO>2.0.CO;2

Simionato, C.G., Dragani, W., Meccia, V. y Nuñez, M., 2004. A numerical study of the barotropic circulation of the Rı́o de la Plata estuary: sensitivity to bathymetry, the Earth's rotation and low frequency wind variability. En: Estuarine, Coastal and Shelf Science, 61(2), pp.261-273. DOI: https://doi.org/10.1016/j.ecss.2004.05.005

Simionato, C.G., Vera, C.S. y Siegismund, F., 2005. Surface wind variability on seasonal and interannual scales over Río de la Plata area. En: Journal of Coastal Research, 21(4), pp.770-783. DOI: http://dx.doi.org/10.2112/008-NIS.1

Simionato, C.G., Tejedor, M.L.C., Campetella, C., Guerrero, R. y Moreira, D., 2010. Patterns of sea surface temperature variability on seasonal to sub-annual scales at and offshore the Río de la Plata estuary. En: Continental Shelf Research, 30(19), pp.1983–1997. DOI: https://doi.org/10.1016/j.csr.2010.09.012

Trinchin, R., Ortega, L. y Barreiro, M., 2019. Spatiotemporal characterization of summer coastal upwelling events in Uruguay, South America. En: Regional Studies in Marine Science, 31, 100787. DOI: https://doi.org/10.1016/j.rsma.2019.100787

Uruguay. Decreto Ley 14145, de 25 de enero de 1974. Diario Oficial [En línea], 07 de febrero de 1974. [Consulta: 22 de octubre de 2022]. Disponible en: https://www.impo.com.uy/bases/decretos-ley/14145-1974/1

Uruguay. Decreto 149/997, de 7 de mayo de 1997. Diario Oficial [En línea], 20 de mayo de 1997. [Consulta: 10 de agosto de 2022]. Disponible en: https://www.impo.com.uy/bases/decretos/149-1997

Uruguay. Decreto 115/018, de 24 de abril de 2018. Diario Oficial [En línea], 04 de mayo de 2018. [Consulta: 10 de agosto de 2022]. Disponible en: https://www.impo.com.uy/bases/decretos/115-2018

Wallace, J.M., Smith, C. y Bretherton, C.S., 1992. Singular value decomposition of wintertime sea surface temperature and 500-mb height anomalies. En: Journal of Climate, 5(6), pp.561-576. DOI: http://dx.doi.org/10.1175/1520-0442(1992)005<0561:SVDOWS>2.0.CO;2

Published

2022-11-11

How to Cite

de Mello, C., Barreiro, M. ., Marin, Y., Ortega, L., Trinchin, R., & Manta, G. (2022). Relationship between convergence fronts and location of the coastal fleet during the occurrence of coastal upwelling in Uruguay. INNOTEC, (24 jul-dic), e624. https://doi.org/10.26461/24.03

Issue

Section

Articles

Most read articles by the same author(s)