Relación entre frentes de convergencia y localización de la flota pesquera durante la ocurrencia de surgencia costera en Uruguay

Autores

  • Camila de Mello Departamento de Ciencias de la Atmósfera y Física de los Océanos, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay https://orcid.org/0000-0002-4492-4892
  • Marcelo Barreiro Departamento de Ciencias de la Atmósfera y Física de los Océanos, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay https://orcid.org/0000-0002-7819-1607
  • Yamandú Marin Dirección Nacional de Recursos Acuáticos, Montevideo, Uruguay https://orcid.org/0000-0002-7483-8063
  • Leonardo Ortega Dirección Nacional de Recursos Acuáticos, Montevideo, Uruguay https://orcid.org/0000-0002-1254-2822
  • Romina Trinchin Departamento de Ciencias de la Atmósfera y Física de los Océanos, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay https://orcid.org/0000-0003-0511-0586
  • Gastón Manta Departamento de Ciencias de la Atmósfera y Física de los Océanos, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay https://orcid.org/0000-0002-3089-4733

DOI:

https://doi.org/10.26461/24.03

Palavras-chave:

modelo CROCO, esforço de pesca, expoentes de Lyapunov

Resumo

A costa uruguaia apresenta eventos de ressurgência durante o verão, associados à presença de ventos do setor Leste-Nordeste. Suas implicações na distribuição, transporte de nutrientes e organismos, bem como efeitos em toda a teia alimentar, não foram previamente analisadas. Este trabalho busca compreender a relação entre eventos de ressurgência e a localização da frota industrial costeira uruguaia (Categoria B). Para isso, foi feita uma aproximação Lagrangiana analisando um determinado evento de ressurgência (20 a 28 de fevereiro de 2008). Foram analisados campos de velocidade de correntes de superfície da costa uruguaia (obtidos do modelo numérico CROCO) e calculados os expoentes de Lyapunov de tamanho finito (ELTF). As médias temporais desses expoentes são indicadores da intensidade da mistura horizontal e apresentaram os maiores valores sobre a região onde a ressurgência é mais intensa. Por outro lado, os valores máximos do ELTF identificam frentes de convergência. As frentes identificadas por esta metodologia correspondem à frente de turbidez (halina) e próxima a Montevidéu, e frentes de temperatura diretamente associadas ao evento de ressurgência analisado. Durante a evolução da ressurgência, essas frentes migraram da costa, para sudoeste e offshore. A localização das regiões frontais detectadas foi comparada com a posição do satélite (VMS) das embarcações costeiras da categoria B da frota pesqueira uruguaia. Em geral, durante as atividades de pesca, as embarcações se posicionaram nas linhas de máxima convergência, sugerindo uma relação entre os processos de retenção e a localização das espécies alvo da frota. Isso demonstra a importância de aprofundar o estudo dos processos físicos que determinam a geração de zonas de retenção e seus efeitos nas comunidades biológicas.

Downloads

Não há dados estatísticos.

Referências

Acha, E.M., Mianzan, H., Guerrero, R., Carreto, J., Giberto, D., Montoya, N. y Carignan, M., 2008. An overview of physical and ecological processes in the Rio de la Plata Estuary. En: Continental Shelf Research, 28(13), pp.1579-1588. DOI: https://doi.org/10.1016/j.csr.2007.01.031

Amante, C. y Eakins, B., 2009. ETOPO1 1 arc-minute global relief model: procedures, data sources and analysis [En línea]. Colorado: NOAA. (NOAA Technical Memorandum NESDIS NGDC-24). [Consulta: 22 de octubre de 2022]. Disponible en: https://www.researchgate.net/profile/Christopher-Amante/publication/228077300_ETOPO1_1_Arc-Minute_Global_Relief_Model_procedures_data_sources_and_analysis/links/59f77930458515547c24c805/ETOPO1-1-Arc-Minute-Global-Relief-Model-procedures-data-sources-and-analysis.pdf

Aurell, E., Boffetta, G., Crisanti, A., Paladin, G. y Vulpiani, A., 1997. Predictability in the large: an extension of the concept of Lyapunov exponent. En: Journal of Physics A: Mathematical and General, 30(1). DOI: https://doi.org/10.1088/0305-4470/30/1/003

Austin, J.A. y Lentz, S.J., 2002. The inner shelf response to wind-driven upwelling and downwelling. En: Journal of Physical Oceanography, 32(7), pp.2171-2193. DOI: https://doi.org/10.1175/1520-0485(2002)032%3C2171:TISRTW%3E2.0.CO;2

Barreiro, M., 2010. Influence of ENSO and the South Atlantic Ocean on climate predictability over Southeastern South America. En: Climate Dynamics, 35(7-8), pp.1493-1508. DOI: https://doi.org/10.1007/s00382-009-0666-9

Berta, M., Ursella, L., Nencioli, F., Doglioli, A.M., Petrenko, A.A. y Cosoli, S., 2014. Surface transport in the Northeastern Adriatic Sea from FSLE analysis of HF radar measurements. En: Continental Shelf Research, 77(1), pp.14-23. DOI: https://doi.org/10.1016/j.csr.2014.01.016

Boffetta, G., Lacorata., G., Redaelli, G. y Vulpiani. A., 2001. Detecting barriers to transport: a review of different techniques. En: Physica D., 158, pp.58–70. DOI: https://doi.org/10.1016/S0167-2789(01)00330-X

Chin, T.M., Vazquez-Cuervo, J. y Armstrong, E.M., 2017. A multi-scale high-resolution analysis of global sea surface temperature. En: Remote sensing of environment, 200, pp.154-169. DOI: https://doi.org/10.1016/j.rse.2017.07.029

Cotté, C., d’Ovidio, F., Dragon, A.C., Guinet, C. y Lévy, M., 2015. Flexible preference of southern elephant seals for distinct mesoscale features within the Antarctic Circumpolar Current. En: Progress in Ocean, 131, pp.46–58. DOI: https://doi.org/10.1016/j.pocean.2014.11.011

Da Silva, A.M., Young, C.C. y Levitus, S., 1994. Atlas of surface marine data. s.l.: NOAA [Consulta: 05 de mayo de 2021]. Disponible en: https://www.croco-ocean.org/download/datasets/

Debreu, L., Marchesiello, P., Penven, P. y Cambon, G., 2012. Two-way nesting in split-explicit ocean models: algorithms, implementation and validation. En: Ocean Modelling, 49, pp.1-21. DOI: https://doi.org/10.1016/j.ocemod.2012.03.003

de Mello, C., Barreiro, M., Ortega, L., Trinchin, R. y Manta, G., 2022. Coastal upwelling along the Uruguayan coast: Structure, variability and drivers. En: Journal of Marine Systems, 230, 103735. DOI: https://doi.org/10.1016/j.jmarsys.2022.103735

de Mello, C., Barreiro, M., Hernández-García, E., Trinchin, R. y Manta, G., en prensa. A Lagrangian study of summer upwelling along the Uruguayan coast. En: Continental Shelf Research.

D’Onofrio, E.E., Fiore, M.M. y Romero, S.I., 1999. Return periods of extreme water levels estimated for some vulnerable areas of Buenos Aires. En: Continental Shelf Research, 19(13), pp.1681-1693. DOI: https://doi.org/10.1016/S0278-4343(98)00115-0

d’Ovidio, F., Fernández, V., Hernández‐García, E. y López, C., 2004. Mixing structures in the Mediterranean Sea from finite size Lyapunov exponents. En: Geophysical Research Letters, 31(17), L17203. DOI: https://doi.org/10.1029/2004GL020328

d’Ovidio, F., Isern-Fontanet, J., López, C., Hernández-García, E. y García-Ladona, E., 2009. Comparison between Eulerian diagnostics and finite-size Lyapunov exponents computed from altimetry in the Algerian basin. En: Deep Sea Research Part I: Oceanographic Research Papers, 56(1), pp.15-31. DOI: https://doi.org/10.1016/j.dsr.2008.07.014

Framiñan, M.B., Etala, M. Acha, R., Guerrero, R., Lasta, C. y Brown, O., 1999. Physical characteristics and processes of the Río de la Plata Estuary. En: Perillo, G., Piccolo, M. y Quivira, M., ed. Estuaries of South America: their morphology and dynamics. Berlin: Springer. pp.161–194. DOI: https://doi.org/10.1007/978-3-642-60131-6_8

Galan, A., Orfila, A., Simarro, G., Hernández-Carrasco, I. y López, C., 2012. Wave mixing rise inferred from Lyapunov exponents. En: Environmental Fluid Mechanics, 12(3), pp.291-300. DOI: https://doi.org/10.1007/s10652-012-9238-3

Gómez-Erache, M., Vizziano, D., Nuñez, Nagy, G. y Lagomarsino. J., 2001. Producción fitoplanctónica en la zona frontal del Rio de la Plata. En: Vizziano, D., Puig, P., Mesones, C., Nagy, G.J., ed. Río de la Plata: investigación para la gestión del ambiente, los recursos pesqueros y la pesquería en el frente salino. Montevideo: Programa Ecoplata.

Guerrero, R.A. y Piola, A.R., 1997. Masas de agua en la plataforma continental. En: Boschi, E.E., ed. El mar Argentino y sus recursos pesqueros. Tomo 1. Antecedentes históricos de las exploraciones en el mar y las características ambientales [En línea]. Mar del Plata: INIDEP. pp.107-118. [Consulta: 5 de agosto de 2022]. Disponible en: https://www.inidep.edu.ar/wordpress/?page_id=846

Guerrero, R.A., Acha, E.M., Framin, M.B. y Lasta, C.A., 1997. Physical oceanography of the Río de la Plata Estuary, Argentina. En: Continental Shelf Research, 17(7), pp.727–742. DOI: https://doi.org/10.1016/S0278-4343(96)00061-1

Guerrero, R.A., Piola, A.R., Molinari, G.N., Osiroff A.P. y Jáuregui, S.I., 2010. Climatología de temperatura y salinidad en el Río de la Plata y su frente marítimo Argentina-Uruguay. Mar del Plata: Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP). 95 p. ISBN 978-987-1443-03-1

Haller, G. y Yuan, G., 2000. Lagrangian coherent structures and mixing in two-dimensional turbulence. En: Physica D: Nonlinear Phenomena, 147(3-4), pp.352-370. DOI: https://doi.org/10.1016/S0167-2789(00)00142-1

Haney, R.L., 1991. On the pressure gradient force over steep topography in sigma coordinate ocean models [En línea]. En: Journal of physical Oceanography, 21(4), pp.610-619. [Consulta: 22 de octubre de 2022]. Disponible en: https://calhoun.nps.edu/handle/10945/46807

Hernández-Carrasco, I., López, C., Hernández-García, E. y Turiel, A., 2011. How reliable are finite-size Lyapunov exponents for the assessment of ocean dynamics? En: Ocean Modelling, 36(3-4), pp.208-218. DOI: https://doi.org/10.1016/j.ocemod.2010.12.006

Horta, S. y Defeo, O., 2012. The spatial dynamics of the whitemouth croaker artisanal fishery in Uruguay and interdependencies with the industrial fleet. En: Fisheries Research, 125–126, pp.121-128. DOI: https://doi.org/10.1016/j.fishres.2012.02.007

Jaureguizar, A., Cortés, F., Milessi, A., Cozzolino, E. y Allega, L., 2015. A trans-ecosystem fishery: Environmental effects on the small-scale gillnet fishery along the Río de la Plata boundary. En: Estuarine, Coastal and Shelf Science, 166, Part A, pp.92-104. DOI: https://doi.org/10.1016/j.ecss.2014.11.003

Joseph, B. y Legras, B., 2002. Relation between kinematic boundaries, stirring, and barriers for the Antarctic polar vortex. En: Journal of the Atmospheric Sciences, 59(7), pp.1198-1212. DOI: https://doi.org/10.1175/1520-0469(2002)059%3C1198:RBKBSA%3E2.0.CO;2

Kanamitsu, M., Ebisuzaki, W., Woollen, J., Yang, S.K., Hnilo, J.J., Fiorino, M. y Potter, G.L., 2002. En: Bulletin of the American Meteorological Society, 83(11), pp.1631-1643. DOI: http://dx.doi.org/10.1175/BAMS-83-11-1631

Koh, T.Y. y Legras, B., 2002. Hyperbolic lines and the stratospheric polar vortex. En: Chaos: An Interdisciplinary Journal of Nonlinear Science, 12(2), pp.382-394. DOI: https://doi.org/10.1063/1.1480442

Largier, J.L., 2020. Upwelling bays: how coastal upwelling controls circulation, habitat, and productivity in bays. En: Annual Review of Marine Science, 12, pp.415-447. DOI: https://doi.org/10.1146/annurev-marine-010419-011020

Lehahn, Y., d'Ovidio, F., Lévy, M. y Heifetz, E., 2007. Stirring of the northeast Atlantic spring bloom: A Lagrangian analysis based on multisatellite data. En: Journal of Geophysical Research: Oceans, 112(C8). DOI: https://doi.org/10.1029/2006JC003927

Lellouche, J.M., Le Galloudec, O., Greiner, E., Garric, G., Regnier, C., Drevillon, M. y Le Traon, P. Y., 2018. The Copernicus Marine Environment Monitoring Service global ocean 1/12° physical reanalysis GLORYS12V1: description and quality assessment [En línea]. En: EGU. 20th EGU General Assembly, EGU2018. Proceedings from the conference held 4-13 April, 2018 in Vienna, Austria. p.19806. [Consulta: 22 de octubre de 2022]. Disponible en: https://ui.adsabs.harvard.edu/abs/2018EGUGA..2019806L/abstract

Levitus, S., Locarnini, R.A., Boyer, T.P., Mishonov, A.V., Antonov, J.I., Garcia, H.E., Baranova, O., Zweng, M., Johnson, D. y Seidov, D., 2010. World ocean atlas 2009, WOA2009 [En línea]. Washington: NOAA. [Consulta: 05 de mayo de 2021]. Disponible en: https://www.croco-ocean.org/download/datasets/

Mackas, D.L., Tsurumi, M., Galbraith, M.D. y Yelland, D.R., 2005. Zooplankton distribution and dynamics in a North Pacific Eddy of coastal origin: II. Mechanisms of eddy colonization by and retention of offshore species. En: Deep Sea Research Part II: Topical Studies in Oceanography, 52(7-8), pp.1011-1035. DOI: https://doi.org/10.1016/j.dsr2.2005.02.008

Martínez, A. y Ortega, L., 2015. Delimitation of domains in the external Río de la Plata estuary, involving phytoplanktonic and hydrographic variables. En: Brazilian Journal of Oceanography, 63 (3), pp.217–227. DOI: https://doi.org/10.1590/S1679-87592015086106303

Meccia, V.L., Simionato, C.G. y Guerrero, R.A., 2013. The Rio de la Plata Estuary response to wind variability in synoptic timescale: salinity fields and salt wedge structure. En: Journal of Coastal Research, 29(1), pp.61–77. DOI: https://doi.org/10.2112/JCOASTRES-D-11-00063.1

Mesones, C., Puig, P. y Martínez. A., 2001. Relación de especies costeras con las características ambientales. En: Vizziano, D., Puig, P., Mesones, C. y Nagy, G.J., ed. Río de la Plata: investigación para la gestión del ambiente, los recursos pesqueros y la pesquería en el frente salino. Montevideo: Programa Ecoplata.

Moira, L.C., Simionato, C., Campetella, C., Moreira, D. y Guerrero, R., 2013. Surgencia, ¿Un fenómeno común en la costa norte del Río de la Plata exterior? En: Frente Marítimo, 23, pp.275-290.

Molcard, A., Poje, A.C. y Özgökmen, T.M., 2006. Directed drifter launch strategies for Lagrangian data assimilation using hyperbolic trajectories. En: Ocean Modelling, 12(3-4), pp.268-289. DOI: https://doi.org/10.1016/j.ocemod.2005.06.004

Nagy, G.J., Gómez-Erache, M., López, C.H. y Perdomo, A.C., 2002. Distribution patterns of nutrients and symptoms of eutrophication in the Rio de la Plata River Estuary System. En: Hydrobiologia, 475/476, pp.125-139. DOI: http://dx.doi.org/10.1023/A:1020300906000

Norbis, W., 1995. Influence of wind, behaviour and characteristics of the croaker (Micropogonias furnieri) artisanal fishery in the Rio de la Plata (Uruguay). En: Fisheries Research, 22(1–2), pp.43-58. ISSN 0165-7836. DOI: https://doi.org/10.1016/0165-7836(94)00310-S

Norbis, W., Paesch, L. y Galli. O., 2006. Los recursos pesqueros de la costa de Uruguay: ambiente, biología y gestión. En: Menafra, R. Rodríguez-Gallego, L. Scarabino, F. y Conde, D., eds. Bases para la conservación y el manejo de la costa uruguaya. Montevideo: Vida Silvestre Uruguay. 668 p.

Ortega, L. y Martínez, A., 2007. Multiannual and seasonal variability of water masses and fronts over the Uruguayan shelf. En: Journal of Coastal Research, 23(3), pp.618-629. DOI: https://doi.org/10.2112/04-0221.1

Oschlies, A. y Garcon, V., 1998. Eddy-induced enhancement of primary production in a model of the North Atlantic Ocean. En: Nature, 394(6690), pp.266-269. DOI: https://doi.org/10.1038/28373

Özgökmen, T.M., Griffa, A., Mariano, A.J. y Piterbarg, L.I., 2000. On the predictability of Lagrangian trajectories in the ocean [En línea]. En: Journal of Atmospheric and Oceanic Technology, 17(3), pp.366-383. [Consulta: 10 de agosto de 2022]. Disponible en: http://www.tamayozgokmen.org/ftp-pub/jmr04.pdf

Pauly, D. y Christensen, V., 1995. Primary production required to sustain global fisheries. En: Nature, 374(6519), pp.255-257. DOI: ttps://doi.org/10.1038/374255a0

Pimenta, F., Garvine, R. W. y Münchow, A., 2008. Observations of coastal upwelling off Uruguay downshelf of the Plata estuary, South America. En: Journal of Marine Research, 66(6), pp.835-872.

Piola, A.R., Matano, R.P., Palma, E.D., Möller Jr, O.O. y Campos, E.J., 2005. The influence of the Plata River discharge on the western South Atlantic shelf. En: Geophysical Research Letters, 32(1). DOI: https://doi.org/10.1029/2004GL021638

Pisciottano, G., Díaz, A., Cazess, G. y Mechoso, C.R., 1994. El niño-southern oscillation impact on rainfall in Uruguay. En: Journal of Climate, 7(8), pp.1286-1302. DOI: http://dx.doi.org/10.1175/1520-0442(1994)007%3C1286:ENSOIO%3E2.0.CO;2

Prants, S.V., Budyansky, M.V. y Uleysky, M.Y., 2014. Identifying Lagrangian fronts with favourable fishery conditions. En: Deep Sea Research Part I: Oceanographic Research Papers, 90, pp.27-35. DOI: https://doi.org/10.1175/1520-0442(1994)007%3C1286:ENSOIO%3E2.0.CO;2

Rossi, V., López, C., Sudre, J., Hernández‐García, E. y Garçon, V., 2008. Comparative study of mixing and biological activity of the Benguela and Canary upwelling systems. En: Geophysical Research Letters, 35(11). DOI: https://doi.org/10.1029/2008GL033610

Shchepetkin, A.F. y McWilliams, J.C., 1998. Quasi-monotone advection schemes based on explicit locally adaptive dissipation. En: Monthly Weather Review, 126(6), pp.1541-1580. DOI: https://doi.org/10.1175/1520-0493(1998)126<1541:QMASBO>2.0.CO;2

Simionato, C.G., Dragani, W., Meccia, V. y Nuñez, M., 2004. A numerical study of the barotropic circulation of the Rı́o de la Plata estuary: sensitivity to bathymetry, the Earth's rotation and low frequency wind variability. En: Estuarine, Coastal and Shelf Science, 61(2), pp.261-273. DOI: https://doi.org/10.1016/j.ecss.2004.05.005

Simionato, C.G., Vera, C.S. y Siegismund, F., 2005. Surface wind variability on seasonal and interannual scales over Río de la Plata area. En: Journal of Coastal Research, 21(4), pp.770-783. DOI: http://dx.doi.org/10.2112/008-NIS.1

Simionato, C.G., Tejedor, M.L.C., Campetella, C., Guerrero, R. y Moreira, D., 2010. Patterns of sea surface temperature variability on seasonal to sub-annual scales at and offshore the Río de la Plata estuary. En: Continental Shelf Research, 30(19), pp.1983–1997. DOI: https://doi.org/10.1016/j.csr.2010.09.012

Trinchin, R., Ortega, L. y Barreiro, M., 2019. Spatiotemporal characterization of summer coastal upwelling events in Uruguay, South America. En: Regional Studies in Marine Science, 31, 100787. DOI: https://doi.org/10.1016/j.rsma.2019.100787

Uruguay. Decreto Ley 14145, de 25 de enero de 1974. Diario Oficial [En línea], 07 de febrero de 1974. [Consulta: 22 de octubre de 2022]. Disponible en: https://www.impo.com.uy/bases/decretos-ley/14145-1974/1

Uruguay. Decreto 149/997, de 7 de mayo de 1997. Diario Oficial [En línea], 20 de mayo de 1997. [Consulta: 10 de agosto de 2022]. Disponible en: https://www.impo.com.uy/bases/decretos/149-1997

Uruguay. Decreto 115/018, de 24 de abril de 2018. Diario Oficial [En línea], 04 de mayo de 2018. [Consulta: 10 de agosto de 2022]. Disponible en: https://www.impo.com.uy/bases/decretos/115-2018

Wallace, J.M., Smith, C. y Bretherton, C.S., 1992. Singular value decomposition of wintertime sea surface temperature and 500-mb height anomalies. En: Journal of Climate, 5(6), pp.561-576. DOI: http://dx.doi.org/10.1175/1520-0442(1992)005<0561:SVDOWS>2.0.CO;2

Publicado

2022-11-11

Como Citar

de Mello, C., Barreiro, M. ., Marin, Y., Ortega, L., Trinchin, R., & Manta, G. (2022). Relación entre frentes de convergencia y localización de la flota pesquera durante la ocurrencia de surgencia costera en Uruguay. INNOTEC, (24 jul-dic), e624. https://doi.org/10.26461/24.03

Edição

Seção

Artículos

Artigos mais lidos pelo mesmo(s) autor(es)