Effect of storage period of common sunflower oil oleogels on their thermal behaviour and oxidative deterioration

Authors

  • Jimena Lázaro Área Grasas y Aceites, Departamento Ciencia y Tecnología de Alimentos, Facultad de Química, Universidad de la República. Montevideo, Uruguay https://orcid.org/0000-0003-3120-3786
  • Nadia Segura Área Grasas y Aceites, Departamento Ciencia y Tecnología de Alimentos, Facultad de Química, Universidad de la República. Montevideo, Uruguay https://orcid.org/0000-0002-9196-1557
  • Natalia Martínez Área Grasas y Aceites, Departamento Ciencia y Tecnología de Alimentos, Facultad de Química, Universidad de la República. Montevideo, Uruguay https://orcid.org/0000-0002-7088-5751
  • Bruno Alejandro Irigaray González Área Grasas y Aceites, Departamento Ciencia y Tecnología de Alimentos, Facultad de Química, Universidad de la República. Montevideo, Uruguay https://orcid.org/0000-0003-1979-3285

DOI:

https://doi.org/10.26461/25.04

Keywords:

structuring, waxes, stability

Abstract

Oleogels are particularly important as they can be used as a replacement for fatty materials for food use, although their use is conditioned by their shelf life. In this context, thermal properties of sunflower oil (AG) oleogels with beeswax (CA) and carnauba wax (CC) as structurants at different concentrations were studied by differential scanning calorimetry, and their oxidative deterioration at room temperature as a function of storage time. According to oleogels melting thermograms, the increase of the structurant concentration caused an increase in the peak temperatures. The ranges associated with the destructuring temperature were between 26.3 and 60.8 °C and 35.9 and 86.1 °C while the corresponding enthalpies ranged from 1.5 to 6.5 J/g and 3.3 to 13.3 J/g for CA and CC, respectively. The results for oxidative deterioration were higher for the CC oleogels. This indicates that CA oleogels have a higher resistance to oxidation and thus higher oxidative stability. In conclusion, the oleogels studied could only be used in foods with a shelf life of less than 6 months.

Downloads

Download data is not yet available.

References

Americal Oil Chemists’ Society, 1990. Official methods and recommended practices of the American Oil Chemists’ Society. 4a ed. Champaign: AOCS. Official method Cd 8-53.

Blake, A. I. y Marangoni, A. G., 2014. Structure and physical properties of plant wax crystal networks and their relationship to oil binding capacity. En: J. Amer. Oil Chem. Soc., 91(6), pp. 885-903. DOI: https://doi.org/10.1007/s11746-014-2435-0

Buchwald, R.; Breed, M. D. y Greenberg, A. R., 2008. The thermal properties of beeswaxes: unexpected findings. En: Journal of Experimental Biology, 211(1), pp. 121–127. DOI: https://doi.org/10.1242/jeb.007583

Consejo Oleícola Internacional, 2019. Method of analysis. Spectrophotometric investigation in the ultraviolet. COI/T.20/Doc. No 19. [En línea]. Madrid: COI. [Consulta: 16 de febrero de 2023]. Disponible en: https://www.internationaloliveoil.org/wp-content/uploads/2019/11/Method-COI-T.20-Doc.-No-19-Rev.-5-2019-2.pdf

Dassanayake, L. S. K.; Kodali, D. R. y Ueno, S., 2011. Formation of oleogels based on edible lipid materials. En: Current Opinion in Colloid & Interface Science, 16(5), pp. 432–439. DOI: https://doi.org/10.1016/j.cocis.2011.05.005

Di Rienzo, J. A.; Casanoves, F.; Balzarini, M. G.; Gonzalez, L.; Tablada, M. y Robledo, C. W, 2020. InfoStat [En línea]. Versión 2020. Córdoba: Universidad Nacional de Córdoba. [Consulta: 20 de febrero de 2023]. Disponible en: http://www.infostat.com.ar

Doan, C. D.; Van der Walle, D.; Dwettinck, K. y Patel, A. R., 2015. Evaluating the oil-gelling properties of natural waxes in rice bran oil: Rheological, thermal and microstructural study. En: J. Amer. Oil Chem. Soc., 92(86), pp. 801-811. DOI: https://doi.org/10.1007/s11746-015-2645-0

Firestone, D., 2006. Physical and chemical characteristics of oils, fats, and waxes. 2a. ed. Champaign: AOCS Press.

Frolova, Y. V.; Sobolev, R. V.; Sarkisyan, V. A. y Kochetkova, A. A., 2021. Approaches to study the oxidative stability of oleogels. En: IOP Conference Series: Earth and Environmental Science, 677(3), 032045. DOI: 10.1088/1755-1315/677/3/032045

Gaudino, N., Ghazani, S. M.; Clark, S.; Marangoni, A.G. y Acevedo, N.C., 2019. Development of lecithin and stearic acid based oleogels and oleogel emulsions for edible semisolid applications. En: Food Res. Int., 116, pp. 79-89. DOI: https://doi.org/10.1016/j.foodres.2018.12.021

Giacintucci, V., Di Mattia, C. D., Sacchetti, G., Flamminii, F., Gravelle, A. J., Baylis, B., Dutcher, J. R., Marangoni, A. G. y Pittia, P., 2018. Ethylcellulose oleogels with extra virgin olive oil: the role of oil minor components on microstructure and mechanical strength. En: Food Hydrocolloids, 84, pp. 508-514. DOI: https://doi.org/10.1016/j.foodhyd.2018.05.030

Hwang, H. S.; Fhaner, M.; Winkler-Moser, J. K. y Liu, S. X., 2018. Oxidation of fish oil oleogels formed by natural waxes in comparison with bulk oil. En: Eur. J. Lipid Sci. Technol., 120(5), 1700378. DOI: https://doi.org/10.1002/ejlt.201700378

Hwang, H. S., 2020. A critical review on structures, health effects, oxidative stability, and sensory properties of oleogels. En: Biocatalysis and Agricultural Biotechnology, 101657. DOI: https://doi.org/10.1016/j.bcab.2020.101657

IUPAC, 1987. Standard methods for the analysis of oils, fats and derivatives. 7ma ed. Oxford: Blackwell. Method 2.301.

Luo, S. Z.; Hu, X. F.; Jia, Y. J.; Pan, L. H.; Zheng, Z.; Zhao, Y. Y.; Mu, D. D.; Zhong, X. Y.; Jiang, S. T., 2019. Camellia oil-based oleogels structuring with tea polyphenol-palmitate particles and citrus pectin by emulsion-templated method: Preparation, characterization and potential application. En: Food Hydrocoll., 95, pp. 76-87. DOI: https://doi.org/10.1016/j.foodhyd.2019.04.016

Martins, A. J., Cerqueira, F., Vicente, A. A., Cunha, R. L., Pastrana, L. M. y Cerqueira, M. A., 2022. Gelation behavior and stability of multicomponent sterol-based oleogels. En: Gels, 8(37), pp. 1-15, DOI: https://doi.org/10.3390/gels8010037

Patel, A. R.; Babaahmadi, M.; Lesaffer, A. y Dewettinck, K., 2015. Rheological profiling of organogels prepared at critical gelling concentrations of natural waxes in a triacylglycerol solvent. En: J. Agric. Food Chem., 63, pp. 4862-4869. DOI: https://doi.org/10.1021/acs.jafc.5b01548

Sagiri, S. S.; Singh, V. K.; Pal, K.; Banerjee, I. y Basak, P., 2015. Stearic acid based oleogels: a study on the molecular, thermal and mechanical properties. En: Mater Sci. Eng. C. Mater. Biol. Appl., 48, pp. 688-699, DOI: https://doi.org/10.1016/j.msec.2014.12.018

Shakeel, A.; Farooq, U.; Iqbal, T.; Yasin, S. y Lupi, F. R., 2019. Key characteristics and modeling of bigels systems: A review. En: Mater Sci Eng C Mater Biol Appl., 97, pp. 932-953, DOI: https://doi.org/10.1016/j.msec.2018.12.075

Sobolev, R.; Frolova, Yu; Sarkisyan, V.; Makarenko, M. y Kochetkova A., 2022. Effect of beeswax and combinations of its fractions on the oxidative stability of oleogels. En: Food Bioscience, 48, 101744. DOI: https://doi.org/10.1016/j.fbio.2022.101744

Toro-Vazquez, J. F.; Morales-Rueda, J. A.; Dibildox-Alvarado, E.; Charó-Alonso M.; Alonzo-Macias M. y González-Chávez, M. M., 2007. Thermal and textural properties of organogels developed by candelilla wax in safflower oil. En: J. Am. Oil Chem. Soc., 84(11), pp. 989-1000. DOI: https://doi.org/10.1007/s11746-007-1139-0

Uruguay. Ministerio de Salud Pública, 1994. Reglamento bromatológico nacional, decreto 315/994 [En línea]. Montevideo: IMPO. [Consulta: 14 de febrero de 2023]. Disponible en: https://www.impo.com.uy/bases/decretos-reglamento/315-1994

Yılmaz, E. y Öǧütcü, M., 2014. Oleogels of virgin olive oil with carnauba wax and monoglyceride as spreadable products. En: Grasas y Aceites, 65(3). DOI: https://doi.org/10.3989/gya.0349141

Published

2023-05-02

How to Cite

Lázaro, J., Segura, N., Martínez, N., & Irigaray González, B. A. (2023). Effect of storage period of common sunflower oil oleogels on their thermal behaviour and oxidative deterioration. INNOTEC, (25 ene-jun), e632. https://doi.org/10.26461/25.04

Issue

Section

Articles