Optical properties, flow behavior and hardness of gels based on nanoemulsion
DOI:
https://doi.org/10.26461/27.02Keywords:
gelling agents, flow properties, textureAbstract
Due to the increase in the elderly population (>60 years), the food industry has as challenge to design foods for this population group, considering the swallowing changes that occur because of aging. Therefore, this work aimed to evaluate the effect of different hydrocolloid mixtures on the physical properties of gels based on nanoemulsions. Four samples were prepared using a base nanoemulsion (194 nm) with different mixtures of gelling agents: 5.25% APS-Soy Protein Isolate or APL-Whey Protein Isolate and 0.75% AG-Agar or CAR-k-carrageenan. The gels were characterized according to their optical, flow, and texture properties. The results showed that all gels had a yellow-beige color, especially those with APL. On the other hand, all the gels showed a slight drop in viscosity over time, which would facilitate their swallowing due to low fluidization. Furthermore, the hardness of the gels was <600 N/m2, which is considered adequate for the swallowing needs of older people. In conclusion, using hydrocolloid mixtures allows us to obtain gels based on nanoemulsions with flow and textural characteristics suitable for easy and safe swallowing, enabling the development of foods adapted to the sensory requirements of older people.
Downloads
References
Aguilera, J. M. y Park, D., 2016. Texture-modified foods for the elderly: status, technology and opportunities. En: Trends in Food Science and Technology, 57, pp. 156-164. DOI: https://doi.org/10.1016/j.tifs.2016.10.001
Alavi, F.; Momen, S.; Emam-Djomeh, Z.; Salami, M. y Moosavi-Movahedi, A. A., 2018. Radical cross-linked whey protein aggregates as building blocks of non-heated cold-set gels. En: Food Hydrocolloids, 81, pp. 429-441. DOI: https://doi.org/10.1016/j.foodhyd.2018.03.016
Alves, A. C. y Tavares, G. M., 2019. Mixing animal and plant proteins: Is this way to improve protein techno-functionalities? En: Food Hydrocolloids, 97, pp. 105171. DOI: https://doi.org/10.1016/j.foodhyd.2019.06.016
Barrón-Pavón, V.; Artiaga Núñez, C.; Higuera Espinoza, V.; Rodríguez-Fernández, A.; García-Flores, V.; Sanhueza-Garrido, M. y González-Stager, A., 2020. Ingesta alimentaria y presbifagia en adultos mayores activos de la comunidad de Chillán, Chile. En: Revista Chilena de Nutrición, 47, pp. 580-587. DOI: https://doi.org/10.4067/s0717-75182020000400580
Bayram, H. M.; Ilgaz, F.; Serel Arslan, S.; Demir, N. y Rakıcıoğlu, N., 2021. The relationship between dysphagia, oral health, masticatory performance and activities of daily living in elderly individuals as assessed by the eating assessment tool. En: Progress in Nutrition, 23, pp. 1-7. DOI: https://doi.org/10.23751/pn.v23i1.9101
Burey, P.; Bhandari, B.; Howes, T. y Gidley, M. J., 2008. Hydrocolloid gel particles: formation, characterization, and application. En: Critical Reviews in Food Science and Nutrition, 48, pp. 361-377. DOI: https://doi.org/10.1080/10408390701347801
Chantrapornchai, W. y McClements, D. J., 2002. Influence of NaCL on optical properties, large-strain rheology and water holding capacity of heat-induced whey protein isolate gels. En: Food Hydrocolloids, 16, pp. 467-476. DOI: https://doi.org/10.1016/s0268-005x(01)00124-2
Cichero, J. A. Y., 2019. Evaluating chewing function: expanding the dysphagia field using food oral processing and the IDDSI framework. En: Journal of Texture Studies, 51, pp. 56-66. DOI: https://doi.org/10.1111/jtxs.12462
Cui, Y.; Li, C.; Guo, Y.; Liu, X.; Zhu, F.; Liu, Z.; Liu, X. y Yang, F., 2022. Rheological & 3D printing properties of potato starch composite gels. En: Journal of Food Engineering, 313, pp. 110756. DOI: https://doi.org/10.1016/J.JFOODENG.2021.110756
Farjami, T. y Madadlou, A., 2019. An overview on preparation of emulsion-filled gels and emulsion particulate gels. En: Trends in Food Science & Technology, 86, pp. 85-94. DOI: https://doi.org/10.1016/j.tifs.2019.02.043
Fasolin, L. H.; Pereira, R. N.; Pinheiro, A. C.; Martins, J. T.; Andrade, C. C. P.; Ramos, O. L. y Vicente, A. A., 2019. Emergent food proteins–Towards sustainability, health and innovation. En: Food Research International, 125, pp. 108586. DOI: https://doi.org/10.1016/j.foodres.2019.108586
Fontes-Candia, C.; Ström, A.; Lopez-Sanchez, P.; López-Rubio, A. y Martínez-Sanz, M., 2020. Rheological and structural characterization of carrageenan emulsion gels. En: Algal Research, 47, pp. 101873. DOI: https://doi.org/10.1016/j.algal.2020.101873
Garrec, D. A.; Guthrie, B. y Norton, I. T., 2013. Kappa carrageenan fluid gel material properties. Part 1: rheology. En: Food Hydrocolloids, 33, pp. 151-159. DOI: https://doi.org/10.1016/j.foodhyd.2013.02.014
Giura, L.; Urtasun, L.; Belarra, A.; Ansorena, D. y Astiasarán, I., 2021. Exploring tools for designing dysphagia-friendly foods: A review. En: Foods, 10, pp. 1334. DOI: https://doi.org/10.3390/foods10061334
Gómez-Mascaraque, L. G. y Pinho, S. C., 2021. Microstructural analysis of whey/soy protein isolate mixed gels using confocal Raman microscopy. En: Foods, 10, pp. 2179. DOI: https://doi.org/10.3390/foods10092179
He, Q.; Hort, J. y Wolf, B., 2016. Predicting sensory perceptions of thickened solutions based on rheological analysis. En: Food Hydrocolloids, 61, pp. 221–232. DOI: https://doi.org/10.1016/J.FOODHYD.2016.05.010
Ikeda, S. y Foegeding, E. A., 1999. Dynamic viscoelastic properties of thermally induced whey protein isolate gels with added lecithin. En: Food Hydrocolloids, 13, pp. 245-254. DOI: https://doi.org/10.1016/S0268-005X(99)00006-5
Khalesi, H.; Sun, C.; He, J.; Lu, W. y Fang, Y., 2021. The role of amyloid fibrils in the modification of whey protein isolate gels with the form of stranded and particulate microstructures. En: Food Research International, 140, pp. 109856. DOI: https://doi.org/10.1016/j.foodres.2020.109856
Laguna, L.; Manickam, I.; Arancibia, C. y Tárrega, A., 2020. Viscosity decay of hydrocolloids under oral conditions. En: Food Research International, 136, pp. 109300. DOI: https://doi.org/10.1016/J.FOODRES.2020.109300
León, A. M.; Medina, W. T.; Park, D. J. y Aguilera, J. M., 2018. Properties of microparticles from a whey protein isolate/alginate emulsion gel. En: Food Science and Technology International, 24, pp. 414-423. DOI: https://doi.org/10.1177/1082013218762210
Li, Y.; Kang, Z.; Sukmanov, V. y Ma, H., 2021. Effects of soy protein isolate on gel properties and water holding capacity of low-salt pork myofibrillar protein under high pressure processing. En: Meat Science, 176, pp. 108471. DOI: https://doi.org/10.1016/j.meatsci.2021.108471
Li, M.; Hou, X.; Lin, L.; Jiang, F.; Qiao, D. y Xie, F., 2023. Legume protein/polysaccharide food hydrogels: Preparation methods, improvement strategies and applications. En: International Journal of Biological Macromolecules, 243, pp. 125217. DOI: https://doi.org/10.1016/j.ijbiomac.2023.125217
Liang, X.; Ma, C.; Yan, X.; Zeng, H.; McClements, D. J.; Liu, X. y Liu, F., 2020. Structure, rheology and functionality of whey protein emulsion gels: Effects of double cross-linking with transglutaminase and calcium ions. En: Food Hydrocolloids, 102, pp. 105569. DOI: https://doi.org/10.1016/J.FOODHYD.2019.105569
Lin, D.; Kelly, A. L. y Miao, S., 2020. Preparation, structure-property relationships and applications of different emulsion gels: Bulk emulsion gels, emulsion gel particles, and fluid emulsion gels. En: Trends in Food Science & Technology, 102, pp. 123-137. DOI: https://doi.org/10.1016/j.tifs.2020.05.024
Lin, D.; Kelly, A. L.; Maidannyk, V. y Miao, S., 2021. Effect of structuring emulsion gels by whey or soy protein isolate on the structure, mechanical properties, and in-vitro digestion of alginate-based emulsion gel beads. En: Food Hydrocolloids, 110, pp. 106165. DOI: https://doi.org/10.1016/j.foodhyd.2020.106165
Lu, Y.; Mao, L.; Hou, Z.; Miao, S. y Gao, Y., 2019. Development of emulsion gels for the delivery of functional food ingredients: From structure to functionality. En: Food Engineering Reviews, 11, pp. 245-258. DOI: https://doi.org/10.1007/s12393-019-09194-z
Lumivero, 2023. XLSTAT Statistical and data analysis solution. Vers. 2023.2.1414. Paris: Lumivero.
Ma, C.; Li, S.; Yin, Y.; Xu, W.; Xue, T.; Wang, Y.; Liu, X. y Liu, F., 2022. Preparation, characterization, formation mechanism and stability of allicin-loaded emulsion gel. En: LWT, 161, pp. 113389. DOI: https://doi.org/10.1016/j.lwt.2022.113389
McClements, D. J., 2015. Food emulsions: principles, practices, and techniques. Boca Ratón: CRC Press.
Martínez-Sanz, M.; Ström, A.; Lopez-Sanchez, P.; Knutsen, S. H.; Ballance, S.; Zobel, H.; Sokolova, A.; Gilbert, E. P. y López-Rubio, A., 2020. Advanced structural characterisation of agar-based hydrogels: Rheological and small angle scattering studies. En: Carbohydrate Polymers, 236, pp. 115655. DOI: https://doi.org/10.1016/j.carbpol.2019.115655
Mezger, T. G., 2014. Rotational test. Cap. 3. En: Mezger, T. The rheology book. Hanover: Vincentz Network. pp. 29-73.
Munialo, C. D.; Kontogiorgos, V.; Euston, S. R. y Nyambayo, I., 2020. Rheological, tribological and sensory attributes of texture‐modified foods for dysphagia patients and the elderly: A review. En: International Journal of Food Science & Technology, 55, pp. 1862-1871. DOI: https://doi.org/10.1111/ijfs.14483
Nguyen, Q. D.; Jensen, C. T. B. y Kristensen, P. G., 1998. Experimental and modeling studies of the flow properties of maize and waxy maize starch pastes. En: Chemical Engineering Journal, 70, pp. 165-171. DOI: https://doi.org/10.1016/S0923-0467(98)00081-5
Organización Mundial de la Salud, 2021. Envejecimiento y salud [En línea]. Ginebra: OMS. [Consulta: xxxxx .]. Disponible en: https://www.who.int/es/news-room/fact-sheets/detail/ageing-and-health
Peleg, M., 2019. The instrumental texture profile analysis revisited. En: Journal of Texture Studies, 50, pp. 362-368. DOI: https://doi.org/10.1111/jtxs.12392
Qin, P.; Wang, T. Y Luo, Y., 2022. A review on plant-based proteins from soybean: Health benefits and soy product development. En: Journal of Agriculture and Food Research, 7, 100265. DOI: https://doi.org/10.1016/j.jafr.2021.100265
Riquelme, N.; Savignones, C.; López, A.; Zúñiga, R. N. y Arancibia, C., 2023. Effect of gelling agent type on the physical properties of nanoemulsion-based gels. En: Colloids and Interfaces, 7, pp. 49. DOI: https://doi.org/10.3390/colloids7030049
Ryu, J. y McClements, D. J., 2023. Impact of heat-set and cold-set gelling polysaccharides on potato protein gelation: gellan gum, agar, and methylcellulose. En: Food Hydrocolloids, 149, pp. 109535. DOI: https://doi.org/10.1016/j.foodhyd.2023.109535
Siegwein, A. M.; Vodovotz, Y. y Fisher, E. L., 2011. Concentration of soy protein isolate affects Starch-Based confections’ texture, sensory, and storage properties. En: Journal of Food Science, 76, pp. E422-E428. DOI: https://doi.org/10.1111/j.1750-3841.2011.02241.x
Torrez-Ortiz, K.; Sotelo-Díaz, L. y Caez-Ramírez R., 2022. Mechanical and rheological categorization of food patterns suitable for older adults with swallowing limitation. En: International Journal of Food Properties, 25, pp. 2627-2660. DOI: https://doi.org/10.1080/10942912.2022.2140811
Ullah, I.; Hu, Y.; You, J.; Yin, T.; Xiong, S.; Din, Z. U.; Huang, Q. y Liu, R., 2018. Influence of okara dietary fiber with varying particle sizes on gelling properties, water state and microstructure of tofu gel. En: Food Hydrocolloids, 89, pp. 512-522. DOI: https://doi.org/10.1016/j.foodhyd.2018.11.006
Wada, S.; Kawate, N. y Mizuma, M., 2017. What type of food can older adults masticate: Evaluation of mastication performance using color-changeable chewing gum. En: Dysphagia, 32, pp. 636-643. DOI: https://doi.org/10.1007/s00455-017-9807-1
Wan, C.; Cheng, Q.; Zeng, M. y Huang, C., 2023. Recent progress in emulsion gels: from fundamentals to applications. En: Soft Matter, 19, pp. 1282-1292. DOI: https://doi.org/10.1039/D2SM01481E
Wanasingha, N.; Dorishetty, P.; Dutta, N. K. y Choudhury, N. R., 2021. Polyelectrolyte gels: fundamentals, fabrication and applications. En: Gels, 7, pp. 148. DOI: https://doi.org/10.3390/gels7030148
Wang, Y.; Zhao, J.; Zhang, W.; Liu, C.; Jauregi, P. y Huang, M., 2020. Modification of heat-induced whey protein gels by basic amino acids. En: Food Hydrocolloids, 100, pp. 105397. DOI: https://doi.org/10.1016/j.foodhyd.2019.105397
Wirth, R.; Dziewas, R.; Beck, A. M.; Clave, P.; Heppner, H. J.; Langmore, S.; Leischker, A.; Martino, R.; Pluschinski, P.; Rösler, A.; Shaker, R.; Warnecke, T.; Sieber, C. C.; Volkert, D. y Hamdy, S., 2016. Oropharyngeal dysphagia in older persons: from pathophysiology to adequate intervention: a review and summary of an international expert meeting. En: Clinical Interventions in Aging, 11, pp. 189-208. DOI: https://doi.org/10.2147/cia.s97481
Yue, J.; Chen, X.; Yao, X.; Gou, Q.; Li, D.; Liu, H.; Yao, X. y Nishinari, K., 2022. Stability improvement of emulsion gel fabricated by Artemisia sphaerocephala Krasch. polysaccharide fractions. En: International Journal of Biological Macromolecules, 205, pp. 253-260. DOI: https://doi.org/10.1016/j.ijbiomac.2022.02.069
Zang, J.; Pan, X.; Zhang, Y.; Tu, Y.; Xu, H.; Tang, D.; Zhang, Q.; Chen, J. y Yin, Z., 2023. Mechanistic insights into gel formation of egg-based yoghurt: The dynamic changes in physicochemical properties, microstructure, and intermolecular interactions during fermentation. En: Food Research International, 172, pp. 113097. DOI: https://doi.org/10.1016/J.FOODRES.2023.113097
Zhang, L.; Zhang, Z.; Euston, S. R.; Li, B.; Li, E.; Fu, C. y Chen, G., 2023. Structural and gelling properties of whey proteins influenced by various acids: Experimental and computational approaches. En: Food Hydrocolloids, 144, pp. 109003. DOI: https://doi.org/10.1016/j.foodhyd.2023.109003
Zhou, P.; Wen, L.; Ai, T.; Liang, H.; Li, J. y Li, B., 2022. A novel emulsion gel solely stabilized by the hot water extracted polysaccharide from psyllium husk: Self-healing plays a key role. En: Food Hydrocolloids, 130, pp. 107718. DOI: https://doi.org/10.1016/j.foodhyd.2022.107718
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Cristóbal Rojas-Pizarro, Matías Meneses Garrido, Karen Vielma Domínguez, Natalia Riquelme Hinojosa, Carla Arancibia Aguilar
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Los autores del manuscrito declaran conocer y aceptar los siguientes términos de responsabilidad:
Haber participado lo suficiente en el trabajo como para hacer pública la responsabilidad por su contenido.
Que el manuscrito representa un trabajo original que no fue publicado ni está siendo considerado por otra revista para su publicación, en parte o en forma íntegra, tanto impresa como electrónica.
Que en caso de ser solicitado, procurará o cooperará en la obtención y suministro de datos sobre los cuales el manuscrito esté basado.
Declara que la información divulgada que pudiera pertenecer a un tercero cuenta con la autorización correspondiente.
Autorización para la publicación y compromiso de cita de primera publicación
Los autores/as conservan los derechos de autor y ceden a la revista INNOTEC / INNOTEC Gestión el derecho de la primera publicación, con el trabajo registrado con la licencia de atribución Creative Commons Reconocimiento-NoComercial 4.0 Internacional. Creative Commons, que permite a terceros utilizar lo publicado siempre que mencionen la autoría del trabajo y a la primera publicación en esta revista sin fines comerciales.
El autor se compromete a realizar la cita completa de la edición institucional de esta primer publicación en las siguientes publicaciones -completas o parciales- efectuadas en cualquier otro medio de divulgación, impreso o electrónico.
Los autores/as pueden realizar otros acuerdos contractuales no comerciales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en esta revista (p. ej., incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en esta revista.
Se permite a los autores/as publicar su trabajo en Internet (por ejemplo en páginas institucionales o personales) antes y durante el proceso de revisión, ya que puede conducir a intercambios productivos y a una mayor y más rápida difusión del trabajo publicado (vea The Effect of Open Access). A su vez los autores/as autorizan al LATU a publicar el trabajo en su repositorio digital.
Los conceptos y opiniones vertidos en los artículos son de responsabilidad de sus autores.
Este obra está bajo una licencia Reconocimiento-NoComercial 4.0 Internacional.