Optical properties, flow behavior and hardness of gels based on nanoemulsion

Authors

  • Cristóbal Rojas-Pizarro Laboratorio de Investigación en Propiedades de los Alimentos (INPROAL), Departamento de Ciencia y Tecnología de los Alimentos, Facultad Tecnológica, Universidad de Santiago de Chile. Santiago, Chile https://orcid.org/0009-0001-9038-249X
  • Matías Meneses Garrido Laboratorio de Investigación en Propiedades de los Alimentos (INPROAL), Departamento de Ciencia y Tecnología de los Alimentos, Facultad Tecnológica, Universidad de Santiago de Chile. Santiago, Chile https://orcid.org/0009-0003-2095-3239
  • Karen Vielma Domínguez Laboratorio de Investigación en Propiedades de los Alimentos (INPROAL), Departamento de Ciencia y Tecnología de los Alimentos, Facultad Tecnológica, Universidad de Santiago de Chile. Santiago, Chile https://orcid.org/0009-0005-7435-7170
  • Natalia Riquelme Hinojosa Laboratorio de Investigación en Propiedades de los Alimentos (INPROAL), Departamento de Ciencia y Tecnología de los Alimentos, Facultad Tecnológica, Universidad de Santiago de Chile. Santiago, Chile https://orcid.org/0000-0003-3490-1045
  • Carla Arancibia Aguilar Laboratorio de Investigación en Propiedades de los Alimentos (INPROAL), Departamento de Ciencia y Tecnología de los Alimentos, Facultad Tecnológica, Universidad de Santiago de Chile. Santiago, Chile https://orcid.org/0000-0002-2174-3474

DOI:

https://doi.org/10.26461/27.02

Keywords:

gelling agents, flow properties, texture

Abstract

Due to the increase in the elderly population (>60 years), the food industry has as challenge to design foods for this population group, considering the swallowing changes that occur because of aging. Therefore, this work aimed to evaluate the effect of different hydrocolloid mixtures on the physical properties of gels based on nanoemulsions. Four samples were prepared using a base nanoemulsion (194 nm) with different mixtures of gelling agents: 5.25% APS-Soy Protein Isolate or APL-Whey Protein Isolate and 0.75% AG-Agar or CAR-k-carrageenan. The gels were characterized according to their optical, flow, and texture properties. The results showed that all gels had a yellow-beige color, especially those with APL. On the other hand, all the gels showed a slight drop in viscosity over time, which would facilitate their swallowing due to low fluidization. Furthermore, the hardness of the gels was <600 N/m2, which is considered adequate for the swallowing needs of older people. In conclusion, using hydrocolloid mixtures allows us to obtain gels based on nanoemulsions with flow and textural characteristics suitable for easy and safe swallowing, enabling the development of foods adapted to the sensory requirements of older people.

Downloads

Download data is not yet available.

References

Aguilera, J. M. y Park, D., 2016. Texture-modified foods for the elderly: status, technology and opportunities. En: Trends in Food Science and Technology, 57, pp. 156-164. DOI: https://doi.org/10.1016/j.tifs.2016.10.001

Alavi, F.; Momen, S.; Emam-Djomeh, Z.; Salami, M. y Moosavi-Movahedi, A. A., 2018. Radical cross-linked whey protein aggregates as building blocks of non-heated cold-set gels. En: Food Hydrocolloids, 81, pp. 429-441. DOI: https://doi.org/10.1016/j.foodhyd.2018.03.016

Alves, A. C. y Tavares, G. M., 2019. Mixing animal and plant proteins: Is this way to improve protein techno-functionalities? En: Food Hydrocolloids, 97, pp. 105171. DOI: https://doi.org/10.1016/j.foodhyd.2019.06.016

Barrón-Pavón, V.; Artiaga Núñez, C.; Higuera Espinoza, V.; Rodríguez-Fernández, A.; García-Flores, V.; Sanhueza-Garrido, M. y González-Stager, A., 2020. Ingesta alimentaria y presbifagia en adultos mayores activos de la comunidad de Chillán, Chile. En: Revista Chilena de Nutrición, 47, pp. 580-587. DOI: https://doi.org/10.4067/s0717-75182020000400580

Bayram, H. M.; Ilgaz, F.; Serel Arslan, S.; Demir, N. y Rakıcıoğlu, N., 2021. The relationship between dysphagia, oral health, masticatory performance and activities of daily living in elderly individuals as assessed by the eating assessment tool. En: Progress in Nutrition, 23, pp. 1-7. DOI: https://doi.org/10.23751/pn.v23i1.9101

Burey, P.; Bhandari, B.; Howes, T. y Gidley, M. J., 2008. Hydrocolloid gel particles: formation, characterization, and application. En: Critical Reviews in Food Science and Nutrition, 48, pp. 361-377. DOI: https://doi.org/10.1080/10408390701347801

Chantrapornchai, W. y McClements, D. J., 2002. Influence of NaCL on optical properties, large-strain rheology and water holding capacity of heat-induced whey protein isolate gels. En: Food Hydrocolloids, 16, pp. 467-476. DOI: https://doi.org/10.1016/s0268-005x(01)00124-2

Cichero, J. A. Y., 2019. Evaluating chewing function: expanding the dysphagia field using food oral processing and the IDDSI framework. En: Journal of Texture Studies, 51, pp. 56-66. DOI: https://doi.org/10.1111/jtxs.12462

Cui, Y.; Li, C.; Guo, Y.; Liu, X.; Zhu, F.; Liu, Z.; Liu, X. y Yang, F., 2022. Rheological & 3D printing properties of potato starch composite gels. En: Journal of Food Engineering, 313, pp. 110756. DOI: https://doi.org/10.1016/J.JFOODENG.2021.110756

Farjami, T. y Madadlou, A., 2019. An overview on preparation of emulsion-filled gels and emulsion particulate gels. En: Trends in Food Science & Technology, 86, pp. 85-94. DOI: https://doi.org/10.1016/j.tifs.2019.02.043

Fasolin, L. H.; Pereira, R. N.; Pinheiro, A. C.; Martins, J. T.; Andrade, C. C. P.; Ramos, O. L. y Vicente, A. A., 2019. Emergent food proteins–Towards sustainability, health and innovation. En: Food Research International, 125, pp. 108586. DOI: https://doi.org/10.1016/j.foodres.2019.108586

Fontes-Candia, C.; Ström, A.; Lopez-Sanchez, P.; López-Rubio, A. y Martínez-Sanz, M., 2020. Rheological and structural characterization of carrageenan emulsion gels. En: Algal Research, 47, pp. 101873. DOI: https://doi.org/10.1016/j.algal.2020.101873

Garrec, D. A.; Guthrie, B. y Norton, I. T., 2013. Kappa carrageenan fluid gel material properties. Part 1: rheology. En: Food Hydrocolloids, 33, pp. 151-159. DOI: https://doi.org/10.1016/j.foodhyd.2013.02.014

Giura, L.; Urtasun, L.; Belarra, A.; Ansorena, D. y Astiasarán, I., 2021. Exploring tools for designing dysphagia-friendly foods: A review. En: Foods, 10, pp. 1334. DOI: https://doi.org/10.3390/foods10061334

Gómez-Mascaraque, L. G. y Pinho, S. C., 2021. Microstructural analysis of whey/soy protein isolate mixed gels using confocal Raman microscopy. En: Foods, 10, pp. 2179. DOI: https://doi.org/10.3390/foods10092179

He, Q.; Hort, J. y Wolf, B., 2016. Predicting sensory perceptions of thickened solutions based on rheological analysis. En: Food Hydrocolloids, 61, pp. 221–232. DOI: https://doi.org/10.1016/J.FOODHYD.2016.05.010

Ikeda, S. y Foegeding, E. A., 1999. Dynamic viscoelastic properties of thermally induced whey protein isolate gels with added lecithin. En: Food Hydrocolloids, 13, pp. 245-254. DOI: https://doi.org/10.1016/S0268-005X(99)00006-5

Khalesi, H.; Sun, C.; He, J.; Lu, W. y Fang, Y., 2021. The role of amyloid fibrils in the modification of whey protein isolate gels with the form of stranded and particulate microstructures. En: Food Research International, 140, pp. 109856. DOI: https://doi.org/10.1016/j.foodres.2020.109856

Laguna, L.; Manickam, I.; Arancibia, C. y Tárrega, A., 2020. Viscosity decay of hydrocolloids under oral conditions. En: Food Research International, 136, pp. 109300. DOI: https://doi.org/10.1016/J.FOODRES.2020.109300

León, A. M.; Medina, W. T.; Park, D. J. y Aguilera, J. M., 2018. Properties of microparticles from a whey protein isolate/alginate emulsion gel. En: Food Science and Technology International, 24, pp. 414-423. DOI: https://doi.org/10.1177/1082013218762210

Li, Y.; Kang, Z.; Sukmanov, V. y Ma, H., 2021. Effects of soy protein isolate on gel properties and water holding capacity of low-salt pork myofibrillar protein under high pressure processing. En: Meat Science, 176, pp. 108471. DOI: https://doi.org/10.1016/j.meatsci.2021.108471

Li, M.; Hou, X.; Lin, L.; Jiang, F.; Qiao, D. y Xie, F., 2023. Legume protein/polysaccharide food hydrogels: Preparation methods, improvement strategies and applications. En: International Journal of Biological Macromolecules, 243, pp. 125217. DOI: https://doi.org/10.1016/j.ijbiomac.2023.125217

Liang, X.; Ma, C.; Yan, X.; Zeng, H.; McClements, D. J.; Liu, X. y Liu, F., 2020. Structure, rheology and functionality of whey protein emulsion gels: Effects of double cross-linking with transglutaminase and calcium ions. En: Food Hydrocolloids, 102, pp. 105569. DOI: https://doi.org/10.1016/J.FOODHYD.2019.105569

Lin, D.; Kelly, A. L. y Miao, S., 2020. Preparation, structure-property relationships and applications of different emulsion gels: Bulk emulsion gels, emulsion gel particles, and fluid emulsion gels. En: Trends in Food Science & Technology, 102, pp. 123-137. DOI: https://doi.org/10.1016/j.tifs.2020.05.024

Lin, D.; Kelly, A. L.; Maidannyk, V. y Miao, S., 2021. Effect of structuring emulsion gels by whey or soy protein isolate on the structure, mechanical properties, and in-vitro digestion of alginate-based emulsion gel beads. En: Food Hydrocolloids, 110, pp. 106165. DOI: https://doi.org/10.1016/j.foodhyd.2020.106165

Lu, Y.; Mao, L.; Hou, Z.; Miao, S. y Gao, Y., 2019. Development of emulsion gels for the delivery of functional food ingredients: From structure to functionality. En: Food Engineering Reviews, 11, pp. 245-258. DOI: https://doi.org/10.1007/s12393-019-09194-z

Lumivero, 2023. XLSTAT Statistical and data analysis solution. Vers. 2023.2.1414. Paris: Lumivero.

Ma, C.; Li, S.; Yin, Y.; Xu, W.; Xue, T.; Wang, Y.; Liu, X. y Liu, F., 2022. Preparation, characterization, formation mechanism and stability of allicin-loaded emulsion gel. En: LWT, 161, pp. 113389. DOI: https://doi.org/10.1016/j.lwt.2022.113389

McClements, D. J., 2015. Food emulsions: principles, practices, and techniques. Boca Ratón: CRC Press.

Martínez-Sanz, M.; Ström, A.; Lopez-Sanchez, P.; Knutsen, S. H.; Ballance, S.; Zobel, H.; Sokolova, A.; Gilbert, E. P. y López-Rubio, A., 2020. Advanced structural characterisation of agar-based hydrogels: Rheological and small angle scattering studies. En: Carbohydrate Polymers, 236, pp. 115655. DOI: https://doi.org/10.1016/j.carbpol.2019.115655

Mezger, T. G., 2014. Rotational test. Cap. 3. En: Mezger, T. The rheology book. Hanover: Vincentz Network. pp. 29-73.

Munialo, C. D.; Kontogiorgos, V.; Euston, S. R. y Nyambayo, I., 2020. Rheological, tribological and sensory attributes of texture‐modified foods for dysphagia patients and the elderly: A review. En: International Journal of Food Science & Technology, 55, pp. 1862-1871. DOI: https://doi.org/10.1111/ijfs.14483

Nguyen, Q. D.; Jensen, C. T. B. y Kristensen, P. G., 1998. Experimental and modeling studies of the flow properties of maize and waxy maize starch pastes. En: Chemical Engineering Journal, 70, pp. 165-171. DOI: https://doi.org/10.1016/S0923-0467(98)00081-5

Organización Mundial de la Salud, 2021. Envejecimiento y salud [En línea]. Ginebra: OMS. [Consulta: xxxxx .]. Disponible en: https://www.who.int/es/news-room/fact-sheets/detail/ageing-and-health

Peleg, M., 2019. The instrumental texture profile analysis revisited. En: Journal of Texture Studies, 50, pp. 362-368. DOI: https://doi.org/10.1111/jtxs.12392

Qin, P.; Wang, T. Y Luo, Y., 2022. A review on plant-based proteins from soybean: Health benefits and soy product development. En: Journal of Agriculture and Food Research, 7, 100265. DOI: https://doi.org/10.1016/j.jafr.2021.100265

Riquelme, N.; Savignones, C.; López, A.; Zúñiga, R. N. y Arancibia, C., 2023. Effect of gelling agent type on the physical properties of nanoemulsion-based gels. En: Colloids and Interfaces, 7, pp. 49. DOI: https://doi.org/10.3390/colloids7030049

Ryu, J. y McClements, D. J., 2023. Impact of heat-set and cold-set gelling polysaccharides on potato protein gelation: gellan gum, agar, and methylcellulose. En: Food Hydrocolloids, 149, pp. 109535. DOI: https://doi.org/10.1016/j.foodhyd.2023.109535

Siegwein, A. M.; Vodovotz, Y. y Fisher, E. L., 2011. Concentration of soy protein isolate affects Starch-Based confections’ texture, sensory, and storage properties. En: Journal of Food Science, 76, pp. E422-E428. DOI: https://doi.org/10.1111/j.1750-3841.2011.02241.x

Torrez-Ortiz, K.; Sotelo-Díaz, L. y Caez-Ramírez R., 2022. Mechanical and rheological categorization of food patterns suitable for older adults with swallowing limitation. En: International Journal of Food Properties, 25, pp. 2627-2660. DOI: https://doi.org/10.1080/10942912.2022.2140811

Ullah, I.; Hu, Y.; You, J.; Yin, T.; Xiong, S.; Din, Z. U.; Huang, Q. y Liu, R., 2018. Influence of okara dietary fiber with varying particle sizes on gelling properties, water state and microstructure of tofu gel. En: Food Hydrocolloids, 89, pp. 512-522. DOI: https://doi.org/10.1016/j.foodhyd.2018.11.006

Wada, S.; Kawate, N. y Mizuma, M., 2017. What type of food can older adults masticate: Evaluation of mastication performance using color-changeable chewing gum. En: Dysphagia, 32, pp. 636-643. DOI: https://doi.org/10.1007/s00455-017-9807-1

Wan, C.; Cheng, Q.; Zeng, M. y Huang, C., 2023. Recent progress in emulsion gels: from fundamentals to applications. En: Soft Matter, 19, pp. 1282-1292. DOI: https://doi.org/10.1039/D2SM01481E

Wanasingha, N.; Dorishetty, P.; Dutta, N. K. y Choudhury, N. R., 2021. Polyelectrolyte gels: fundamentals, fabrication and applications. En: Gels, 7, pp. 148. DOI: https://doi.org/10.3390/gels7030148

Wang, Y.; Zhao, J.; Zhang, W.; Liu, C.; Jauregi, P. y Huang, M., 2020. Modification of heat-induced whey protein gels by basic amino acids. En: Food Hydrocolloids, 100, pp. 105397. DOI: https://doi.org/10.1016/j.foodhyd.2019.105397

Wirth, R.; Dziewas, R.; Beck, A. M.; Clave, P.; Heppner, H. J.; Langmore, S.; Leischker, A.; Martino, R.; Pluschinski, P.; Rösler, A.; Shaker, R.; Warnecke, T.; Sieber, C. C.; Volkert, D. y Hamdy, S., 2016. Oropharyngeal dysphagia in older persons: from pathophysiology to adequate intervention: a review and summary of an international expert meeting. En: Clinical Interventions in Aging, 11, pp. 189-208. DOI: https://doi.org/10.2147/cia.s97481

Yue, J.; Chen, X.; Yao, X.; Gou, Q.; Li, D.; Liu, H.; Yao, X. y Nishinari, K., 2022. Stability improvement of emulsion gel fabricated by Artemisia sphaerocephala Krasch. polysaccharide fractions. En: International Journal of Biological Macromolecules, 205, pp. 253-260. DOI: https://doi.org/10.1016/j.ijbiomac.2022.02.069

Zang, J.; Pan, X.; Zhang, Y.; Tu, Y.; Xu, H.; Tang, D.; Zhang, Q.; Chen, J. y Yin, Z., 2023. Mechanistic insights into gel formation of egg-based yoghurt: The dynamic changes in physicochemical properties, microstructure, and intermolecular interactions during fermentation. En: Food Research International, 172, pp. 113097. DOI: https://doi.org/10.1016/J.FOODRES.2023.113097

Zhang, L.; Zhang, Z.; Euston, S. R.; Li, B.; Li, E.; Fu, C. y Chen, G., 2023. Structural and gelling properties of whey proteins influenced by various acids: Experimental and computational approaches. En: Food Hydrocolloids, 144, pp. 109003. DOI: https://doi.org/10.1016/j.foodhyd.2023.109003

Zhou, P.; Wen, L.; Ai, T.; Liang, H.; Li, J. y Li, B., 2022. A novel emulsion gel solely stabilized by the hot water extracted polysaccharide from psyllium husk: Self-healing plays a key role. En: Food Hydrocolloids, 130, pp. 107718. DOI: https://doi.org/10.1016/j.foodhyd.2022.107718

Published

2024-03-23

How to Cite

Rojas-Pizarro, C., Meneses Garrido, M., Vielma Domínguez, K., Riquelme Hinojosa, N., & Arancibia Aguilar, C. (2024). Optical properties, flow behavior and hardness of gels based on nanoemulsion. INNOTEC, (27 ene-jun), e645. https://doi.org/10.26461/27.02

Issue

Section

Articles