Estudio cinético de la cristalización de fases grasas con agregado de fitoesteroles mediante calorimetría diferencial de barrido (DSC)

Autores/as

  • Agustín Rubbo Cassina Área Grasas y Aceites, Departamento de Ciencia y Tecnología de Alimentos, Facultad de Química, Universidad de la República. Montevideo, Uruguay https://orcid.org/0000-0001-7843-0703
  • Gabriela Martínez Pombo Área Grasas y Aceites, Departamento de Ciencia y Tecnología de Alimentos, Facultad de Química, Universidad de la República. Montevideo, Uruguay https://orcid.org/0000-0002-3424-3495
  • Yamila Páez Abril Área Grasas y Aceites, Departamento de Ciencia y Tecnología de Alimentos, Facultad de Química, Universidad de la República. Montevideo, Uruguay https://orcid.org/0000-0002-5623-4055
  • Juan Mihalik Aguirre Área Grasas y Aceites, Departamento de Ciencia y Tecnología de Alimentos, Facultad de Química, Universidad de la República. Montevideo, Uruguay https://orcid.org/0000-0003-1921-5901
  • Bruno Irigaray Gonzalez Área Grasas y Aceites, Departamento de Ciencia y Tecnología de Alimentos, Facultad de Química, Universidad de la República. Montevideo, Uruguay https://orcid.org/0000-0003-1979-3285
  • Natalia Martínez Gadea Área Grasas y Aceites, Departamento de Ciencia y Tecnología de Alimentos, Facultad de Química, Universidad de la República. Montevideo, Uruguay https://orcid.org/0000-0002-7088-5751
  • Nicolás Callejas Campioni Área Grasas y Aceites, Departamento de Ciencia y Tecnología de Alimentos, Facultad de Química, Universidad de la República. Montevideo, Uruguay https://orcid.org/0000-0003-2886-0101

DOI:

https://doi.org/10.26461/25.02

Palabras clave:

modelo de Avrami, composición lipídica, sobreenfriamiento, componentes menores

Resumen

El objetivo de este trabajo fue el estudio de los parámetros cinéticos de la cristalización isotérmica de fases grasas a distintas temperaturas mediante calorimetría diferencial de barrido (DSC, por su sigla en inglés). Las fases grasas consistieron en mezclas de aceite de salvado de arroz completamente hidrogenado (FHRBO) y aceite de soja (SBO) en diferentes proporciones (20, 25, 30, 35 y 40 % de FHRBO), siendo ambos materiales previamente purificados. Además, se seleccionaron algunas de las mezclas y se les adicionó una cantidad conocida de fitoesteroles. Los parámetros cinéticos fueron obtenidos aplicando el modelo de Avrami, el cual determina el tiempo de inducción (generación de núcleos cristalinos, ti), el mecanismo de nucleación (exponente de Avrami, n) y el grado de crecimiento cristalino (constante cinética de velocidad, k). Se observó que a mayor contenido de FHRBO y menor temperatura de cristalización, ti se reduce y k aumenta, llevando a una cinética más rápida, lo cual era esperable por el aporte de triglicéridos tri-saturados y un mayor grado de sobreenfriamiento. En la mezcla con 35 % de FHRBO, el agregado de fitoesteroles enlenteció la cinética (aumento de ti y reducción de k); sin embargo, en la de 20 % de FHRBO aumentó tanto ti como k.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Ali, M. A.; Islam M. A.; Othman, N. H.; Noor, A. M. e Ibrahim, M., 2019. Effect of rice bran oil addition on the oxidative degradation and fatty acid composition of soybean oil during heating. En: Acta Sci. Pol. Technol. Aliment., 18(4), pp. 427-438. DOI: https://doi.org/10.17306/J.AFS.2019.0694

American Oil Chemist´s Society, 2009a. Official methods and recommended practices of the American Oil Chemist´s Society (AOCS). 4th ed. Champaign: AOCS. Official Method Ch 3-91.

American Oil Chemist´s Society, 2009b. Official methods and recommended practices of the American Oil Chemist´s Society (AOCS). 4th ed. Champaign: AOCS. Official Method Ce 2-66

American Oil Chemist´s Society, 2009c. Official methods and recommended practices of the American Oil Chemist´s Society (AOCS). 4th ed. Champaign: AOCS. Official Method Ce 5b-89

American Oil Chemist´s Society, 2009d. Official methods and recommended practices of the American Oil Chemist´s Society (AOCS). 4th ed. Champaign: AOCS. Official Method Cj 1-94

Avrami, M., 1941. Kinetics of phase change III. Granulation, phase change, and microstructure. En: J. Chem. Phys., 9, pp. 177–184. DOI: https://doi.org/10.1063/1.1750872

Basso, R.; Badan Ribeiro, A. P.; Masuchi, M. H.; Gioielli, L. A.; Guaraldo Gonçalves, L.A.; Oliveira dos Santos, A.; Pavie Cardoso, L. y Grimaldi, R., 2010. Tripalmitin and monoacylglycerols as modifiers in the crystallization of palm oil. En: Food Chemistry, 122, pp. 1185–1192. DOI: https://doi.org/10.1016/j.foodchem.2010.03.113

Belitz, H. D.; Grosch, W. y Schieberle, P., 2009. Lipids. En: Belitz, H. D., Grosch, W. y Schieberle P. Food chemistry. 4th ed. Berlín: Springer. pp. 158-247.

Buscato, M. H.; Gallani, B.; Ramponi, K.; Badan Ribeiro, A. P. y Guenter, T., 2018. Modification of palm oil crystallization by phytosterol addition as a tool for structuring a low saturated lipid blend. En: Braz. J. Chem. Eng., 35(1), pp. 169-180. DOI: https://doi.org/10.1590/0104-6632.20180351s20160351

Callejas, N.; Suescun, L.; Badan, A. P. y Jachmanián, I., 2021. Zero-trans fats designed by enzyme-catalyzed interesterification of rice bran oil and fully hydrogenated rice bran oil. En: OCL, 28, 46. DOI: https://doi.org/10.1051/ocl/2021036

Cheong, L.; Zhang, H.; Xu, Y. y Xu, X., 2009. Physical characterization of lard partial acylglycerols and their effects on melting and crystallization properties of blends with rapeseed oil. En: J. Agric. Food Chem., 57(11), pp. 5020–5027. DOI: https://doi.org/10.1021/jf900665h

Claro Silva, R.; Schafer de Martin Soares, F. A.; Mayumi Muruyama, J.; Roque Dagostinho, N.; Silva, Y. A.; Andrade Calligaris, G.; Badan Ribeiro, A. P.; Paive Cardoso, L. y Gioielli, L. A., 2014. Effect of diacylglycerol addition on crystallization properties of pure triacylglycerols. En: Food Research International, 55, pp. 436-444. DOI: https://doi.org/10.1016/j.foodres.2013.11.037

Daels, E.; Foubert, I. y Goderis, B., 2017. The effect of adding a commercial phytosterol ester mixture on the phase behavior of palm oil. En: Food Research International, 100, pp. 841-849. DOI: https://doi.org/10.1016/j.foodres.2017.08.015

Daels, E.; Goderis, B.; Matton, V. y Foubert, I., 2018. Isothermal crystallization kinetics of palm oil as influenced by addition of a commercial phytosterol ester mixture. En: J. Agric. Food Chem., 66(15), pp. 3910–3921. DOI: https://doi.org/10.1021/acs.jafc.7b05049

Di Rienzo, J. A.; Casanoves, F.; Balzarini, M. G.; González, L.; Tablada, M. y Robledo, C. W. 2020. InfoStat [En línea]. Versión 29-09-2020. Córdoba: Universidad Nacional de Córdoba. [Consulta: 2 de Febrero de 2021]. Disponible en: http://www.infostat.com.ar.

Foubert, I.; Dewettinck, K. y Vanrolleghem, P. A., 2003. Modelling of the crystallization kinetics of fats. En: Trends in Food Science & Technology, 14(3), pp. 79-92. DOI: https://doi.org/10.1016/S0924-2244(02)00256-X

Gunstone, F. D. y Harwood, J. L., 2007. Occurrence and characterization of oils and fats. En: Gunstone, F. D., Harwood, J. L. y Dijkstra, A. J. The lipid handbook. 3a ed. New York: CRC Press. pp. 37-141.

Himawan, C.; Starov, V. M. y Stapley, A. G. F., 2006. Thermodynamic and kinetic aspects of fat crystallization. En: Adv Colloid Interface, 122, pp. 3–33. DOI: https://doi.org/10.1016/j.cis.2006.06.016

Hubbes, S. S.; Danzl, W. y Foerst, P., 2018. Crystallization kinetics of palm oil of different geographic origins and blends thereof by the application of the Avrami model. En: LWT, 93, pp. 189-196. DOI: https://doi.org/10.3390/foods11121769

Katan, M. B.; Grundy, S. M.; Jones, P.; Law, M.; Miettinen, T. y Paoletti, R., 2003. Efficacy and safety of plant stanols and sterols in the management of blood cholesterol levels. En: Mayo Clinic Proceeding, 78(8), pp. 965–978. DOI: https://doi.org/10.4065/78.8.965

Kawamura, K., 1980. The DSC thermal analysis of crystallization behavior in palm oil II. En: JAOCS, 57, pp. 48–52. DOI: https://doi.org/10.1007/BF02675525

Lu, C.; Qiu, S.; Wang, X.; He, X.; Dang, L. y Wang, Z., 2021. Contrastive analysis of lipid composition and thermal and crystallization behavior of olein/stearin fractionated by novel layer melt crystallization from palm oil. En: Journal of the Science of Food and Agriculture, 101(10), pp. 4350-4360. DOI: https://doi.org/10.1002/jsfa.11075

MacNaughtan, W.; Farhata, I. A.; Himawanb, C.; Starovb, V. M. y Stapley, A. G. F., 2006. A differential scanning calorimetry study of the crystallization kinetics of Tristearin-Tripalmitin mixtures. En: JAOCS, 83, pp. 1-9. DOI: https://doi.org/10.1007/S11746-006-1167-1

Marangoni, A. G., Introduction. 2013a. En: Marangoni, A. G. Structure and Properties of fat crystal networks. 2nd ed. Boca Raton: CRC Press. pp. xv-xviii.

Marangoni, A. G., Nucleation and Crystalline Growth Kinetics. 2013b. En: Marangoni A. G. Structure and Properties of fat crystal networks. 2nd ed. Boca Raton: CRC Press. pp. 27-96.

Marangoni, A. G., 2013c. Crystallography and polymorphism. En: Marangoni A. G. Structure and properties of fat crystal networks. 2a ed. Boca Raton: CRC Press. pp. 1-24.

Marangoni de Oliveira, G.; Ribeiro, A. P. B.; Oliveira dos Santos, A.; Cardoso, L. P. y Kieckbusch, T. G., 2015. Hard fats as additives in palm oil and its relationships to crystallization process and polymorphism. En: LWT, 63, pp. 1163–1170.

Marangoni, A. G., 2005. Crystallization kinetics. En: Marangoni, A. G. Fat crystal networks. 1a ed. New York: Marcel Dekker. pp. 21-83.

Metin, S. y Hartel, R. W., 2005. Crystallization of fats and oils. En: Shahidi, F. Bailey´s industrial oil and fat products. 6a ed. New Jersey: John Wiley & Sons. pp. 45-76.

Miyasaki, E. K.; Luccas, V. y Kieckbusch, T.G., 2016. Modified soybean lecithins as inducers of the acceleration of cocoa butter crystallization. En: Eur. J. Lipid Sci. Technol., 118, pp. 1539-1549. DOI: https://doi.org/10.1002/ejlt.201500093

Mursalin, M.; Hariyadi, P.; Purnomo, E. H.; Andarwulan, N. y Fardiaz, D., 2016. Crystallization kinetics of coconut oil based on Avrami model. En: International Food Research Journal, 23(4), pp. 1355-1360.

Narine, S. S.; Humphrey, K.L. y Laziz, B., 2006. Modification of the Avrami model for application to the kinetics of the melt crystallization of lipids. En: JAOCS, 83(11), pp. 913–921. DOI: https://doi.org/10.1007/s11746-006-5046-6

Ornla-ied, P.; Podchong, P. y Sonwai, S., 2021. Synthesis of cocoa butter alternatives from palm kernel stearin, coconut oil and fully hydrogenated palm stearin blends by chemical interesterification. En: Journal of the Science of Food and Agriculture, 102(4), pp. 1619-1627. DOI: https://doi.org/10.1002/jsfa.11498

Oteng, A. B. y Kersten, S., 2020. Mechanisms of action of trans fatty acids. En: Adv Nutr, 11(3), pp. 697–708. DOI: https://doi.org/10.1093/advances/nmz125

Ribeiro, A. P.; Grimaldi, R.; Gioielli, L. A. y Gonçalves, L., 2009. Zero trans fats from soybean oil and fully hydrogenated soybean oil: physico-chemical properties and food applications. En: Food Res Int., 42(3), pp. 401–410. DOI: https://doi.org/10.1016/j.foodres.2009.01.012

Sato, K., 2001. Crystallization behavior of fats and lipids: A review. En: Chemical Engineering Science, 56, pp. 2255-2265. DOI: https://doi.org/10.1016/S0009-2509(00)00458-9

Segura, N. y Jachmanián I., 2020. Zero-trans fats by enzymatic interesterification of blends beef tallow/rice bran oil. En: OCL, 27, 4. DOI: https://doi.org/10.1051/ocl/2019052

Sharples, A., 1966. Overall kinetics of crystallization. En: Sharples, A. Introduction to polymer crystallization. 1a ed. London: Edward Arnold Ltd. pp. 44-59

Shimadzu Corporation, 2009. Thermal analysis workstation TA-60WS [En línea]. Version 2.21. Kioto: Shimadzu Corporation. [Consulta: 4 de Noviembre de 2022]. Disponible en: https://shimadzu.com.au/ta-60ws

Smith, K. W.; Bhaggan K.; Talbot, G. y Van Malssen, K., 2011. Crystallization of fats: Influence of minor components and additives. En: JAOCS, 88, pp. 1085-1101. DOI: https://doi.org/10.1007/s11746-011-1819-7

Supaphol, P. y Spruiell, J. E., 2000. A New technique for using DSC melting endotherms to study isothermal bulk crystallization of semicrystalline polymers at low degrees of undercooling: Syndiotactic Polypropylene. En: Sci - Phys., 39, pp. 775–792. DOI: https://doi.org/10.1081/MB-100102487

Toro-Vazquez, J.; Dibildox-Alvarado, E.; Charo-Alonso, M.; Herrera-Coronado, V. y Gomez-Aldapa, C., 2002. The Avrami Index and the Fractal Dimension in Vegetable Oil Crystallization. En: JAOCS, 79(9), pp. 855–866. DOI: https://doi.org/10.1007/s11746-002-0570-y

Zuher, M. A., Rashid, N. A., Omar, Z. y Ahmad, N., 2018. The influence of chemical interesterification on the physicochemical and microstructural properties of palm stearin, palm kernel oil, rice bran oil and their blends. En: Malays. Appl. Biol., 47(2), pp. 57–69.

Descargas

Publicado

2023-03-31

Cómo citar

Rubbo Cassina, A. ., Martínez Pombo, G. ., Páez Abril, Y., Mihalik Aguirre, J. ., Irigaray Gonzalez, B. ., Martínez Gadea , N. ., & Callejas Campioni, N. (2023). Estudio cinético de la cristalización de fases grasas con agregado de fitoesteroles mediante calorimetría diferencial de barrido (DSC). INNOTEC, (25 ene-jun), e628. https://doi.org/10.26461/25.02

Número

Sección

Artículos