Estudo cinético da cristalização de misturas graxas com adição de fitoesteróis por calorimetria diferencial de varredura (DSC)

Autores

  • Agustín Rubbo Cassina Área Grasas y Aceites, Departamento de Ciencia y Tecnología de Alimentos, Facultad de Química, Universidad de la República. Montevideo, Uruguay https://orcid.org/0000-0001-7843-0703
  • Gabriela Martínez Pombo Área Grasas y Aceites, Departamento de Ciencia y Tecnología de Alimentos, Facultad de Química, Universidad de la República. Montevideo, Uruguay https://orcid.org/0000-0002-3424-3495
  • Yamila Páez Abril Área Grasas y Aceites, Departamento de Ciencia y Tecnología de Alimentos, Facultad de Química, Universidad de la República. Montevideo, Uruguay https://orcid.org/0000-0002-5623-4055
  • Juan Mihalik Aguirre Área Grasas y Aceites, Departamento de Ciencia y Tecnología de Alimentos, Facultad de Química, Universidad de la República. Montevideo, Uruguay https://orcid.org/0000-0003-1921-5901
  • Bruno Irigaray Gonzalez Área Grasas y Aceites, Departamento de Ciencia y Tecnología de Alimentos, Facultad de Química, Universidad de la República. Montevideo, Uruguay https://orcid.org/0000-0003-1979-3285
  • Natalia Martínez Gadea Área Grasas y Aceites, Departamento de Ciencia y Tecnología de Alimentos, Facultad de Química, Universidad de la República. Montevideo, Uruguay https://orcid.org/0000-0002-7088-5751
  • Nicolás Callejas Campioni Área Grasas y Aceites, Departamento de Ciencia y Tecnología de Alimentos, Facultad de Química, Universidad de la República. Montevideo, Uruguay https://orcid.org/0000-0003-2886-0101

DOI:

https://doi.org/10.26461/25.02

Palavras-chave:

modelo Avrami, composição lipídica, super-resfriamento, , componentes menores

Resumo

O objetivo deste trabalho foi estudar os parâmetros cinéticos da cristalização isotérmica de misturas graxas em diferentes temperaturas por calorimetria diferencial de varredura (DSC). As misturas graxas consistiam em óleo de farelo de arroz totalmente hidrogenado (FHRBO) e óleo de soja (SBO) em diferentes proporções (20, 25, 30, 30, 35 e 40 % FHRBO), sendo ambos os materiais previamente purificados. Além disso, algumas das misturas foram selecionadas e uma quantidade conhecida de fitoesteróis foi adicionada a elas. Os parâmetros cinéticos foram quantificados pela aplicação do modelo de Avrami que determina o tempo de indução (geração de núcleos cristalinos, ti), o mecanismo de nucleação (expoente de Avrami, n) e o grau de crescimento do cristal (constante cinética, k). Observou-se que quanto maior e a proporçõe de FHRBO e menor a temperatura de cristalização ti diminui e k aumenta, levando a uma cinética mais rápida, o que é consistente com a contribuição de triglicerois tri-saturados e maior grau de super-resfriamento. Na mistura com 35 % de FHRBO, a adição de fitoesteróis promoveu um aumento de ti e redução de k, prolongando a nucleação e retardando o crescimento dos cristais. Por outro lado, na mistura com 20% de FHRBO observou-se aumento de ti e k.

Downloads

Não há dados estatísticos.

Referências

Ali, M. A.; Islam M. A.; Othman, N. H.; Noor, A. M. e Ibrahim, M., 2019. Effect of rice bran oil addition on the oxidative degradation and fatty acid composition of soybean oil during heating. En: Acta Sci. Pol. Technol. Aliment., 18(4), pp. 427-438. DOI: https://doi.org/10.17306/J.AFS.2019.0694

American Oil Chemist´s Society, 2009a. Official methods and recommended practices of the American Oil Chemist´s Society (AOCS). 4th ed. Champaign: AOCS. Official Method Ch 3-91.

American Oil Chemist´s Society, 2009b. Official methods and recommended practices of the American Oil Chemist´s Society (AOCS). 4th ed. Champaign: AOCS. Official Method Ce 2-66

American Oil Chemist´s Society, 2009c. Official methods and recommended practices of the American Oil Chemist´s Society (AOCS). 4th ed. Champaign: AOCS. Official Method Ce 5b-89

American Oil Chemist´s Society, 2009d. Official methods and recommended practices of the American Oil Chemist´s Society (AOCS). 4th ed. Champaign: AOCS. Official Method Cj 1-94

Avrami, M., 1941. Kinetics of phase change III. Granulation, phase change, and microstructure. En: J. Chem. Phys., 9, pp. 177–184. DOI: https://doi.org/10.1063/1.1750872

Basso, R.; Badan Ribeiro, A. P.; Masuchi, M. H.; Gioielli, L. A.; Guaraldo Gonçalves, L.A.; Oliveira dos Santos, A.; Pavie Cardoso, L. y Grimaldi, R., 2010. Tripalmitin and monoacylglycerols as modifiers in the crystallization of palm oil. En: Food Chemistry, 122, pp. 1185–1192. DOI: https://doi.org/10.1016/j.foodchem.2010.03.113

Belitz, H. D.; Grosch, W. y Schieberle, P., 2009. Lipids. En: Belitz, H. D., Grosch, W. y Schieberle P. Food chemistry. 4th ed. Berlín: Springer. pp. 158-247.

Buscato, M. H.; Gallani, B.; Ramponi, K.; Badan Ribeiro, A. P. y Guenter, T., 2018. Modification of palm oil crystallization by phytosterol addition as a tool for structuring a low saturated lipid blend. En: Braz. J. Chem. Eng., 35(1), pp. 169-180. DOI: https://doi.org/10.1590/0104-6632.20180351s20160351

Callejas, N.; Suescun, L.; Badan, A. P. y Jachmanián, I., 2021. Zero-trans fats designed by enzyme-catalyzed interesterification of rice bran oil and fully hydrogenated rice bran oil. En: OCL, 28, 46. DOI: https://doi.org/10.1051/ocl/2021036

Cheong, L.; Zhang, H.; Xu, Y. y Xu, X., 2009. Physical characterization of lard partial acylglycerols and their effects on melting and crystallization properties of blends with rapeseed oil. En: J. Agric. Food Chem., 57(11), pp. 5020–5027. DOI: https://doi.org/10.1021/jf900665h

Claro Silva, R.; Schafer de Martin Soares, F. A.; Mayumi Muruyama, J.; Roque Dagostinho, N.; Silva, Y. A.; Andrade Calligaris, G.; Badan Ribeiro, A. P.; Paive Cardoso, L. y Gioielli, L. A., 2014. Effect of diacylglycerol addition on crystallization properties of pure triacylglycerols. En: Food Research International, 55, pp. 436-444. DOI: https://doi.org/10.1016/j.foodres.2013.11.037

Daels, E.; Foubert, I. y Goderis, B., 2017. The effect of adding a commercial phytosterol ester mixture on the phase behavior of palm oil. En: Food Research International, 100, pp. 841-849. DOI: https://doi.org/10.1016/j.foodres.2017.08.015

Daels, E.; Goderis, B.; Matton, V. y Foubert, I., 2018. Isothermal crystallization kinetics of palm oil as influenced by addition of a commercial phytosterol ester mixture. En: J. Agric. Food Chem., 66(15), pp. 3910–3921. DOI: https://doi.org/10.1021/acs.jafc.7b05049

Di Rienzo, J. A.; Casanoves, F.; Balzarini, M. G.; González, L.; Tablada, M. y Robledo, C. W. 2020. InfoStat [En línea]. Versión 29-09-2020. Córdoba: Universidad Nacional de Córdoba. [Consulta: 2 de Febrero de 2021]. Disponible en: http://www.infostat.com.ar.

Foubert, I.; Dewettinck, K. y Vanrolleghem, P. A., 2003. Modelling of the crystallization kinetics of fats. En: Trends in Food Science & Technology, 14(3), pp. 79-92. DOI: https://doi.org/10.1016/S0924-2244(02)00256-X

Gunstone, F. D. y Harwood, J. L., 2007. Occurrence and characterization of oils and fats. En: Gunstone, F. D., Harwood, J. L. y Dijkstra, A. J. The lipid handbook. 3a ed. New York: CRC Press. pp. 37-141.

Himawan, C.; Starov, V. M. y Stapley, A. G. F., 2006. Thermodynamic and kinetic aspects of fat crystallization. En: Adv Colloid Interface, 122, pp. 3–33. DOI: https://doi.org/10.1016/j.cis.2006.06.016

Hubbes, S. S.; Danzl, W. y Foerst, P., 2018. Crystallization kinetics of palm oil of different geographic origins and blends thereof by the application of the Avrami model. En: LWT, 93, pp. 189-196. DOI: https://doi.org/10.3390/foods11121769

Katan, M. B.; Grundy, S. M.; Jones, P.; Law, M.; Miettinen, T. y Paoletti, R., 2003. Efficacy and safety of plant stanols and sterols in the management of blood cholesterol levels. En: Mayo Clinic Proceeding, 78(8), pp. 965–978. DOI: https://doi.org/10.4065/78.8.965

Kawamura, K., 1980. The DSC thermal analysis of crystallization behavior in palm oil II. En: JAOCS, 57, pp. 48–52. DOI: https://doi.org/10.1007/BF02675525

Lu, C.; Qiu, S.; Wang, X.; He, X.; Dang, L. y Wang, Z., 2021. Contrastive analysis of lipid composition and thermal and crystallization behavior of olein/stearin fractionated by novel layer melt crystallization from palm oil. En: Journal of the Science of Food and Agriculture, 101(10), pp. 4350-4360. DOI: https://doi.org/10.1002/jsfa.11075

MacNaughtan, W.; Farhata, I. A.; Himawanb, C.; Starovb, V. M. y Stapley, A. G. F., 2006. A differential scanning calorimetry study of the crystallization kinetics of Tristearin-Tripalmitin mixtures. En: JAOCS, 83, pp. 1-9. DOI: https://doi.org/10.1007/S11746-006-1167-1

Marangoni, A. G., Introduction. 2013a. En: Marangoni, A. G. Structure and Properties of fat crystal networks. 2nd ed. Boca Raton: CRC Press. pp. xv-xviii.

Marangoni, A. G., Nucleation and Crystalline Growth Kinetics. 2013b. En: Marangoni A. G. Structure and Properties of fat crystal networks. 2nd ed. Boca Raton: CRC Press. pp. 27-96.

Marangoni, A. G., 2013c. Crystallography and polymorphism. En: Marangoni A. G. Structure and properties of fat crystal networks. 2a ed. Boca Raton: CRC Press. pp. 1-24.

Marangoni de Oliveira, G.; Ribeiro, A. P. B.; Oliveira dos Santos, A.; Cardoso, L. P. y Kieckbusch, T. G., 2015. Hard fats as additives in palm oil and its relationships to crystallization process and polymorphism. En: LWT, 63, pp. 1163–1170.

Marangoni, A. G., 2005. Crystallization kinetics. En: Marangoni, A. G. Fat crystal networks. 1a ed. New York: Marcel Dekker. pp. 21-83.

Metin, S. y Hartel, R. W., 2005. Crystallization of fats and oils. En: Shahidi, F. Bailey´s industrial oil and fat products. 6a ed. New Jersey: John Wiley & Sons. pp. 45-76.

Miyasaki, E. K.; Luccas, V. y Kieckbusch, T.G., 2016. Modified soybean lecithins as inducers of the acceleration of cocoa butter crystallization. En: Eur. J. Lipid Sci. Technol., 118, pp. 1539-1549. DOI: https://doi.org/10.1002/ejlt.201500093

Mursalin, M.; Hariyadi, P.; Purnomo, E. H.; Andarwulan, N. y Fardiaz, D., 2016. Crystallization kinetics of coconut oil based on Avrami model. En: International Food Research Journal, 23(4), pp. 1355-1360.

Narine, S. S.; Humphrey, K.L. y Laziz, B., 2006. Modification of the Avrami model for application to the kinetics of the melt crystallization of lipids. En: JAOCS, 83(11), pp. 913–921. DOI: https://doi.org/10.1007/s11746-006-5046-6

Ornla-ied, P.; Podchong, P. y Sonwai, S., 2021. Synthesis of cocoa butter alternatives from palm kernel stearin, coconut oil and fully hydrogenated palm stearin blends by chemical interesterification. En: Journal of the Science of Food and Agriculture, 102(4), pp. 1619-1627. DOI: https://doi.org/10.1002/jsfa.11498

Oteng, A. B. y Kersten, S., 2020. Mechanisms of action of trans fatty acids. En: Adv Nutr, 11(3), pp. 697–708. DOI: https://doi.org/10.1093/advances/nmz125

Ribeiro, A. P.; Grimaldi, R.; Gioielli, L. A. y Gonçalves, L., 2009. Zero trans fats from soybean oil and fully hydrogenated soybean oil: physico-chemical properties and food applications. En: Food Res Int., 42(3), pp. 401–410. DOI: https://doi.org/10.1016/j.foodres.2009.01.012

Sato, K., 2001. Crystallization behavior of fats and lipids: A review. En: Chemical Engineering Science, 56, pp. 2255-2265. DOI: https://doi.org/10.1016/S0009-2509(00)00458-9

Segura, N. y Jachmanián I., 2020. Zero-trans fats by enzymatic interesterification of blends beef tallow/rice bran oil. En: OCL, 27, 4. DOI: https://doi.org/10.1051/ocl/2019052

Sharples, A., 1966. Overall kinetics of crystallization. En: Sharples, A. Introduction to polymer crystallization. 1a ed. London: Edward Arnold Ltd. pp. 44-59

Shimadzu Corporation, 2009. Thermal analysis workstation TA-60WS [En línea]. Version 2.21. Kioto: Shimadzu Corporation. [Consulta: 4 de Noviembre de 2022]. Disponible en: https://shimadzu.com.au/ta-60ws

Smith, K. W.; Bhaggan K.; Talbot, G. y Van Malssen, K., 2011. Crystallization of fats: Influence of minor components and additives. En: JAOCS, 88, pp. 1085-1101. DOI: https://doi.org/10.1007/s11746-011-1819-7

Supaphol, P. y Spruiell, J. E., 2000. A New technique for using DSC melting endotherms to study isothermal bulk crystallization of semicrystalline polymers at low degrees of undercooling: Syndiotactic Polypropylene. En: Sci - Phys., 39, pp. 775–792. DOI: https://doi.org/10.1081/MB-100102487

Toro-Vazquez, J.; Dibildox-Alvarado, E.; Charo-Alonso, M.; Herrera-Coronado, V. y Gomez-Aldapa, C., 2002. The Avrami Index and the Fractal Dimension in Vegetable Oil Crystallization. En: JAOCS, 79(9), pp. 855–866. DOI: https://doi.org/10.1007/s11746-002-0570-y

Zuher, M. A., Rashid, N. A., Omar, Z. y Ahmad, N., 2018. The influence of chemical interesterification on the physicochemical and microstructural properties of palm stearin, palm kernel oil, rice bran oil and their blends. En: Malays. Appl. Biol., 47(2), pp. 57–69.

Publicado

2023-03-31

Como Citar

Rubbo Cassina, A. ., Martínez Pombo, G. ., Páez Abril, Y., Mihalik Aguirre, J. ., Irigaray Gonzalez, B. ., Martínez Gadea , N. ., & Callejas Campioni, N. (2023). Estudo cinético da cristalização de misturas graxas com adição de fitoesteróis por calorimetria diferencial de varredura (DSC). INNOTEC, (25 ene-jun), e628. https://doi.org/10.26461/25.02

Edição

Seção

Artículos