Previsão da qualidade da água usando algoritmos de inteligência artificial em praias recreativas de Montevidéu-Uruguai

Autores

  • Ángel Segura Modelización Estadística de Datos e Inteligencia Artificial (MEDIA), Centro Universitario Regional Este (CURE), Universidad de la República. Rocha, Uruguay https://orcid.org/0000-0002-1989-8899
  • Lía Sampognaro Modelización Estadística de Datos e Inteligencia Artificial (MEDIA), Centro Universitario Regional Este (CURE), Universidad de la República. Rocha, Uruguay https://orcid.org/0000-0002-7718-9820
  • Guzmán López Modelización Estadística de Datos e Inteligencia Artificial (MEDIA), Centro Universitario Regional Este (CURE), Universidad de la República. Rocha, Uruguay https://orcid.org/0000-0002-1343-492X
  • Carolina Crisci Modelización Estadística de Datos e Inteligencia Artificial (MEDIA), Centro Universitario Regional Este (CURE), Universidad de la República. Rocha, Uruguay https://orcid.org/0000-0002-3089-8048
  • Mathías Bourel Instituto de Matemática y Estadística Prof. Rafael Laguardia, Facultad de Ingeniería, Universidad de la República. Montevideo, Uruguay. https://orcid.org/0000-0002-7472-7179
  • Victoria Vidal Modelización Estadística de Datos e Inteligencia Artificial (MEDIA), Centro Universitario Regional Este (CURE), Universidad de la República. Rocha, Uruguay https://orcid.org/0000-0002-8623-7804
  • Karina Eirin Modelización Estadística de Datos e Inteligencia Artificial (MEDIA), Centro Universitario Regional Este (CURE), Universidad de la República. Rocha, Uruguay https://orcid.org/0000-0002-6588-4738
  • Claudia Piccini Instituto de Investigaciones Biológicas Clemente Estable. Ministerio de Educación y Cultura. Montevideo, Uruguay https://orcid.org/0000-0002-2762-1953
  • Carla Kruk Instituto de Ecología y Ciencias Ambientales (IECA), Facultad de Ciencias, Universidad de la República. Montevideo, Uruguay https://orcid.org/0000-0003-0760-1186
  • Gonzalo Perera Modelización Estadística de Datos e Inteligencia Artificial (MEDIA), Centro Universitario Regional Este (CURE), Universidad de la República. Rocha, Uruguay. Instituto de Matemática y Estadística Prof. Rafael Laguardia, Facultad de Ingeniería, Universidad de la República. Montevideo, Uruguay https://orcid.org/0000-0002-7530-3503

DOI:

https://doi.org/10.26461/22.07

Palavras-chave:

floresta aleatória, dados não balanceados, contaminação, praia recreativa, saúde humana

Resumo

Construímos modelos de inteligência artificial (IA) para prever a qualidade da água para auxiliar o gerenciamento em praias recreativas. A base de dados históricos gerada pelo Laboratório de Qualidade Ambiental da Intendência de Montevidéu (IM) foi analisada e modelos de IA foram construídos para prever o excesso de coliformes fecais (CF> 2.000). Dez anos de monitoramento de 21 praias de lazer (N = 19359, novembro de 2009 a setembro de 2019) apresentaram uma ampla gama de variabilidade de salinidade e turbidez entre as praias. O CF mostrou uma distribuição assimétrica (min = 4, mediana = 250, média = 1,047 e máx = 1.280.000) com valores acima do limiar em todas as praias. Registradas in situ, variáveis ​​meteorológicas e oceanográficas foram usadas para treinar modelos de IA. Uma floresta aleatória estratificada mostrou o melhor desempenho nas métricas avaliadas, com uma precisão geral de 86% e 60% de melhoria nas taxas positivas verdadeiras em relação à linha de base. Dados de alta qualidade gerados por instituições governamentais, juntamente com estratégias de modelagem, forneceram uma estrutura relevante para auxiliar na gestão de praias e saúde pública.

Downloads

Não há dados estatísticos.

Referências

American Public Health Association, American Water Works Association y Water Environment Federation, 2012. Standard methods for the examination of water and wastewater. 22a ed. Washington: APHA. Standard Method. 9222 E, Approved 2015.

Avila, R., Horn, B., Moriarty, E., Hodson, R. y Moltachanova E., 2018. Evaluating statistical model performance in water quality prediction. En: Journal of Environmental Management, 206, pp.910–919. DOI: https://doi.org/10.1016/j.jenvman.2017.11.049

Bedri, Z., Corkery, A., O’Sullivan, J.J., Deering, L.A., Demeter, K., Meijer, W.G., O’Hare, G. y Masterson, B., 2016. Evaluating a microbial water quality prediction model for beach management under the revised EU Bathing Water Directive. En: Journal of Environmental Management, 167, pp.49–58. DOI: 10.1016/j.jenvman.2015.10.046

Bouchalová, M., Wennberg, A. y Tryland, I., 2013. Impact of rainfall on bathing water quality–a case study of Fiskevollbukta, Inner Oslofjord, Norway. En: Vann, 4, pp.491–498.

Bourel, M., Crisci, C. y Martínez, A., 2017. Consensus methods based on machine learning techniques for marine phytoplankton presence–absence prediction. En: Ecological Informatics, 42, pp.46–54. DOI: 10.1016/j.ecoinf.2017.09.004

Bourel, M. y Segura, A.M., 2018. Multiclass classification methods in ecology. En: Ecological Indicators, 85, pp.1012–1021. DOI: 10.1016/j.ecolind.2017.11.031

Breiman, L., 2001. Random forests. En: Machine Learning, 45(1), pp.5–32.

Brooks, W.R., Fienen, M.N. y Corsi, S.R., 2013. Partial least squares for efficient models of fecal indicator bacteria on Great Lakes beaches. En: Journal of Environmental Management, 114, pp.470–475. DOI: 10.1016/j.jenvman.2012.09.033

Brooks, W., Corsi, S., Fienen, M. y Carvin, R., 2016. Predicting recreational water quality advisories: a comparison of statistical methods. En: Environ. Model. Softw., 76, pp.81–94. DOI: https://doi.org/10.1016/j.envsoft.2015.10.012

Calliari, D., Gómez, M. y Gómez, N., 2005. Biomass and composition of the phytoplankton in the Río de la Plata estuary: large scale distribution and relationship with environmental variables during a Spring cruise. En: Continental Shelf Research, 25(2), pp.197–210. DOI: 10.1016/j.csr.2004.09.009

Chawla, N.V., Bowyer, K.W., Hall, L.O. y Kegelmeyer, W.P., 2002. SMOTE: Synthetic Minority Over-sampling Technique. En: Journal of Artificial Intelligence Research, 16, pp.321–357. DOI: 10.1613/jair.953

Conde, D., Arocena, R. y Rodríguez-Gallego, L., 2002. Recursos acuáticos superficiales de Uruguay: ambientes algunas problemáticas y desafíos para la gestión. En: AMBIOS, III(10), pp.5-9 y IV(11), pp.32-33.

Crisci, C., Ghattas, B. y Perera, G., 2012. A review of supervised machine learning algorithms and their applications to ecological data. En: Ecological Modelling, 240, pp.113–122. DOI: https://doi.org/10.1016/j.ecolmodel.2012.03.001

Crisci, C., Terra R., Pacheco, J.P., Ghattas, B., Bidegain, M., Goyenola, G., Lagomarsino, J.J., Méndez, G. y Mazzeo, M. 2017. Multi-model approach to predict phytoplankton biomass and composition dynamics in a eutrophic shallow lake. En: Ecological Modelling, 360, pp.80-93. DOI: https://doi.org/10.1016/j.ecolmodel.2017.06.017

Cutler, D.R., Edwards, T.C., Beard, K.H., Cutler, A., Hess, K.T., Gibson, J. y Lawler, J.J., 2007. Random forests for classification in ecology. En: Ecology, 88(11), pp.2783–2792. DOI: 10.1890/07-0539.1

Cyterski, M., Brooks, W., Galvin, M., Wolfe, K., Carvin, R., Roddick, T., Fienen, M. and Corsi, S., 2014. Virtual Beach 3.0.6: user’s guide [En línea]. [s.l.]: USEPA. [Consulta: 9 de junio de 2019]. Disponible en: https://www.epa.gov/sites/default/files/2016-03/documents/vb3_manual_3.0.6.pdf

Eregno, F.E., Tryland, I., Tjomsland, T., Myrmel, M., Robertson, L. y Heistad, A., 2016. Quantitative microbial risk assessment combined with hydrodynamic modelling to estimate the public health risk associated with bathing after rainfall events. En: The Science of the Total Environment, 548–549, pp.270–279. DOI: 10.1016/j.scitotenv.2016.01.034

Giampaoli, S. y Spica, V.R., 2014. Health and safety in recreational waters. En: Bulletin of the World Health Organization, 92(2), pp.79–79. DOI: 10.2471/BLT.13.126391

Gorfinkiel, D., 2006. The economic valuation of coastal areas: the case of Uruguay. En: Ocean Yearbook, 20(1), pp.411–434. DOI: https://doi.org/10.1163/22116001-90000115

Hastie, T.J., Tibshirani, R.J. y Friedman, J.H., 2009. The elements of statistical learning: data mining, inference, and prediction. Nueva York: Springer. (Springer Series in Statistics).

Heaney, C.D., Sams, E., Wing, S., Marshall, S., Brenner, K., Dufour, A.P. y Wade, T.J., 2009. Contact with beach sand among beachgoers and risk of illness. En: American Journal of Epidemiology, 170(2), pp.164-172. DOI: https://doi.org/10.1093/aje/kwp152

He, L. y He, Z., 2008. Water quality prediction of marine recreational beaches receiving watershed baseflow and stormwater runoff in Southern California, USA. En: Water Research, 42, pp.2563–2573. DOI: 10.1016/j.watres.2008.01.002

Instituto Nacional de Investigación Agropecuaria, s.d. Clima [En línea]. Montevideo: INIA. [Consulta: 13 de mayo de 2021]. Disponible en: http://www.inia.uy/gras/Clima/

Intendencia de Montevideo, 2019. Programa de monitoreo de agua de playas y costa del departamento de Montevideo. Informe anual 2018-2019 [En línea]. Montevideo: Intendencia de Montevideo. [Consulta: 12 de abril de 2020]. Disponible en: https://montevideo.gub.uy/sites/default/files/biblioteca/informeanualcalidaddeaguadelacosta-2018-2019_0.pdf

Jones, R.M., Liu, L. y Dorevitch, S., 2013. Hydrometeorological variables predict fecal indicator bacteria densities in freshwater: data-driven methods for variable selection. En: Environmental Monitoring and Assessment, 185(3), pp.2355–2366. DOI: 10.1007/s10661-012-2716-8

Kruk, C., Dobroyan, M., Segura, A.M., Balado, I., Trabal, N., Piccini, C., Sampognaro, L., De Leon, F., Rodríguez, A., y Verrastro, N. 2019. Calidad de agua y su percepción en playas: La Paloma, Rocha [En línea]. En: AUGM. II Congreso de Agua, Ambiente y Energía. Montevideo, Uruguay (25-27 de setiembre de 2019). Montevideo: Uruguay. [Consulta: 13 de mayo de 2021]. Disponible en: https://www.fing.edu.uy/imfia/congresos/caae/assets/trabajos/37_Calidad_de_agua_y_su_percepci%C3%B3n_en_playas__La_Paloma__Rocha.pdf

Kruk, C., Dobroyan, M., González, L., Segura, A.M., Balado, I., Trabal, N., De León, F., Martínez, G., Rodríguez, A., Piccini, C., Chalar, G. y Verrastro, N., 2018. Calidad de agua y salud ecosistémica en playas recreativas de la Paloma, Rocha [En línea]. En: Revista Trama, 9(9), pp.1-10. [Consulta: 13 de mayo de 2021]. Disponible en: http://www.auas.org.uy/trama/index.php/Trama/article/view/179

Kruk, C., Piccini, C., Segura, A., Nogueira, L., Carballo, C., Martínez de la Escalera, G., Calliari, D., Ferrari, G., Simoens, M., Cea, J., Alcántara, I., Vico, P. y Miguez, D., 2015. Herramientas para el monitoreo y sistema de alerta de floraciones de cianobacterias nocivas: Río Uruguay y Río de la Plata. En: INNOTEC, (10), pp.23–39. DOI: https://doi.org/10.26461/10.02

Kruk, C., Segura, A.M., Nogueira, L., Alcántara, I., Calliari, D., Martínez de la Escalera, G., Carballo, C., Cabrera, C., Sarthou, F., Scavone, P. y Piccini, C., 2017. A multilevel trait-based approach to the ecological performance of Microcystis aeruginosa complex from headwaters to the ocean. En: Harmful Algae, 70, pp.23–36. DOI: 10.1016/j.hal.2017.10.004

Kuhn, M. y Johnson, K., 2016. Applied predictive modeling. 5ta. imp. cor. Nueva York: Springer.

Lotze, H.K., Lenihan, H.S., Bourque, B.J., Bradbury, R.H., Cooke, R.G., Kay, M.C., Kidwell, S.M., Kirby, M.X., Peterson, C.H. y Jackson, J.B.C., 2006. Depletion, degradation, and recovery potential of estuaries and coastal seas. En: Science, 312, pp.1806-1809. DOI: https://doi.org/10.1126/science.1128035

Mara, D. 2013. Domestic wastewater treatment in developing countries [En línea]: Londres: Earthscan. [Consulta: 13 de mayo de 2021]. Disponible en: https://www.researchgate.net/publication/287291244_Domestic_Wastewater_Treatment_in_Developing_Countries#fullTextFileContent

Martínez de la Escalera, G., Kruk, C., Segura, A.M., Nogueira, L., Alcántara, I. y Piccini, C., 2017. Dynamics of toxic genotypes of Microcystis aeruginosa complex (MAC) through a wide freshwater to marine environmental gradient. En: Harmful Algae, 62, pp.73–83. DOI: 10.1016/j.hal.2016.11.012

Meteomanz.com, s.d. Meteomanz.com [En línea]. [s.l.]: [s.n.]. [Consulta: 13 de mayo de 2021]. Disponible en: http://meteomanz.com/

Park, Y., Kim, M., Pachepsky, Y., Choi, S.H., Cho J.G., Jeon, J. y Cho, K.H., 2018. Development of a nowcasting system using machine learning approaches to predict fecal contamination levels at recreational beaches in Korea. En: Journal of Environment Quality, 47(5), pp.1094-1102. DOI: 10.2134/jeq2017.11.0425

Parkhurst, D.F., Brenner, K.P., Dufour, A.P. y Wymer, L.J., 2005. Indicator bacteria at five swimming beaches—analysis using random forests. En: Water Research, 39(7), pp.1354–1360. https://doi.org/10.1016/j.watres.2005.01.001

R Core Team, 2020. R: A language and environment for statistical computing [En línea]. Viena: R Foundation for Statistical Computing. [Consulta: 30 de marzo de 2021]. Disponible en: http://www.r-project.org/index.html

Sabino, R., Rodrigues, R., Costa, I., Carneiro, C., Cunha, M., Duarte, A., Faria, N., Ferreira, F.C., Gargaté, M.J, Júlio, C., Martins, M.L., Nevers, M.B., Oleastro, M., Solo-Gabriele, H., Veríssimo, C., Viegas, C., Whitman, R.L. y Brandão, J., 2014. Routine screening of harmful microorganisms in beach sands: implications to public health. En: Science of The Total Environment, 472, pp.1062–1069. DOI: 10.1016/j.scitotenv.2013.11.091

Savichtcheva, O. y Okabe, S., 2006. Alternative indicators of fecal pollution: relations with pathogens and conventional indicators, current methodologies for direct pathogen monitoring and future application perspectives. En: Water Research, 40(13), pp.2463–2476. DOI: 10.1016/j.watres.2006.04.040

Searcy, R.T., Taggart, M., Gold, M. y Boehm, A.B., 2018. Implementation of an automated beach water quality nowcast system at ten California oceanic beaches. En: Journal of Environmental Management, 223, pp.633–643. DOI: 10.1016/j.jenvman.2018.06.058

Segura, A.M., Piccini, C., Nogueira, L., Alcántara, I., Calliari, D. y Kruk, C., 2017. Increased sampled volume improves Microcystis aeruginosa complex (MAC) colonies detection and prediction using Random Forests. En: Ecological Indicators, 79, pp.347–354. DOI: 10.1016/j.ecolind.2017.04.047

Shively, D.A., Nevers, M.B., Breitenbach, C., Phanikumar, M.S., Przybyla-Kelly, K., Spoljaric, A.M. y Whitman, R.L., 2016. Prototypic automated continuous recreational water quality monitoring of nine Chicago beaches. En: Journal of Environmental Management, 166, pp.285–293. DOI: 10.1016/j.jenvman.2015.10.011

Simionato, C.G., Clara Tejedor, M.L., Campetella, C., Guerrero, R. y Moreira, D., 2010. Patterns of sea surface temperature variability on seasonal to sub-annual scales at and offshore the Río de la Plata estuary. En: Continental Shelf Research, 30(19), pp.1983–1997. DOI: 10.1016/j.csr.2010.09.012

Thoe, W. y Lee, J.H.W., 2014. Daily forecasting of Hong Kong beach water quality by multiple linear regression models. En: Journal of Environmental Engineering, 140(2). DOI: 10.1061/(ASCE)EE.1943-7870.0000800

United States Environmental Protection Agency, 2019. Virtual beach [En línea]. [s.l.]. USEPA. [Consulta: 28 de junio de 2019]. Disponible en: https://www.epa.gov/ceam/virtual-beach-vb

Uruguay. Decreto 253/979, de 09 de mayo de 2009. Diario Oficial, 31 de mayo de 1979, p.1473.

Uruguay. Ministerio de Ambiente, Dirección Nacional de Medio Ambiente, 2017. Técnica de filtración por membrana 5053UY. En: Uruguay. Ministerio de Ambiente, Dirección Nacional de Medio Ambiente. Manual de procedimientos analíticos para muestras ambientales [En línea]. Montevideo: DINAMA. [Consulta: 12 de marzo de 2021]. Disponible en: https://www.gub.uy/ministerio-ambiente/politicas-y-gestion/manual-procedimientos-analiticos-para-muestras-ambientales-tercera-edicion-2017.

Uruguay. Ministerio de Vivienda Ordenamiento Territorial y Medio Ambiente, 2020. Plan nacional de saneamiento [En línea]. Montevideo: MVOTMA. [Consulta: 30 de mayo de 2020]. Disponible en: https://www.gub.uy/ministerio-ambiente/politicas-y-gestion/planes/plan-nacional-saneamiento

Uruguay. Resolución S/N del 25 de febrero de 2005. Diario Oficial, 2 de marzo de 2005, p.543.

Vapnik, V., 1998. Statistical learning theory. Nueva York: John Wiley and Sons, Inc.

Wade, T.J., Calderon, R.L., Brenner, K.P., Sams, E., Beach, M., Haugland, R. y Dufour, A.P., 2008. High sensitivity of children to swimming-associated gastrointestinal illness: results using a rapid assay of recreational water quality. En: Epidemiology, 19(3), pp.375-383. DOI: 10.1097/EDE.0b013e318169cc87

WHO, 2018. WHO recommendations on scientific, analytical and epidemiological developments relevant to the parameters for bathing water quality in the Bathing Water Directive (2006/7/EC). [s.n.]: WHO.

Zepp, R.G., Cyterski, M., Parmar, R., Wolfe, K., White, E.M. y Molina, M., 2010. Predictive modeling at beaches. Volume II: predictive tools for beach notification. Washington: USEPA.

Zhang, Z., Deng, Z. y Rusch, K.A., 2015. Modeling fecal coliform bacteria levels at gulf coast beaches. En: Water Quality, Exposure and Health, 7(3), pp.255–263. DOI: https://doi.org/10.1007/s12403-014-0145-3

Publicado

2021-10-18

Como Citar

Segura, Ángel, Sampognaro, L., López, G., Crisci, C., Bourel, M., Vidal, V., Eirin, K., Piccini, C., Kruk, C., & Perera, G. (2021). Previsão da qualidade da água usando algoritmos de inteligência artificial em praias recreativas de Montevidéu-Uruguai. INNOTEC, (22 jul-dic), e555. https://doi.org/10.26461/22.07

Edição

Seção

Artículos

Artigos mais lidos pelo mesmo(s) autor(es)