Efeito dos níveis extremos de água 2020-2023 na reprodução de peixes migratórios no rio Uruguay

Autores

  • Daniel Cataldo Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina. Instituto de Ecología Genética y Evolución (IEGBA-CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina. https://orcid.org/0000-0002-3643-0809
  • Facundo Bordet Área de Gestión Ambiental, Comisión Técnica Mixta de Salto Grande, Concordia, Entre Ríos, Argentina. https://orcid.org/0000-0003-3650-8642
  • Lautaro Bruno Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina. https://orcid.org/0009-0003-9355-4802

DOI:

https://doi.org/10.26461/27.04

Palavras-chave:

eventos climáticos, peixesmigratórios, ictioplâncton

Resumo

Avaliou-se o efeito da queda extrema do nível da água sobre a reprodução de peixes migratórios do rio Uruguai. As quedas extremas do nível da água produzem um efeito negativo no ictioplâncton e fornecem novos conhecimentos sobre a intensidade desse efeito durante periodos consecutivos de secas. O estudo compara a abundância e composição do ictioplâncton de três periodos reprodutivos consecutivos (outubro-março), durante as quedas extremas do rio entre 2020-2023, em relação a informações dos 10 anos anteriores (2010-2020) por meio de amostragens semanais em quatro locais dentro do reservatório de Salto Grande. Em comparação com a década anterior, foram observadas diminuições nas abundâncias de P. lineatus (60-85 %), Pseudoplatystoma spp. (52-79 %), L. patí (39-82 %), Pimelodus spp. (24-61 % ) e Anostomidae (26-56 %), bem como mudanças temporais na densidade do ictioplâncton. Diferente do periodo anterior (2010-2020), em que durante as secas de verão ocorriam florações de cianobactérias prejudiciais aos peixes, durante o periodo extraordinário devido a um fenômeno hidrológico, não foram registrados eventos de florações de cianobactérias. A ausência desse efeito prejudicial, somada à capacidade de resiliência dos peixes observada durante o periodo anterior, gera expectativas razoáveis de que, ao final do periodo extraordinário, os peixes lentamente recuperam sua atividade reprodutiva anterior. 

Downloads

Não há dados estatísticos.

Referências

Agostinho, A. A.; Gomes, L. C.; Veríssimo, S. y Okada, E. K., 2004. Flood regime, dam regulation and fish in the Upper Paraná River: effects on assemblage attributes, reproduction and recruitment. En: Reviews in Fish Biology and Fisheries, 14(1), pp. 11–19. DOI: https://doi.org/10.1007/s11160-004-3551-y

Alves, J. C.; Andreotti, G. F.; Agostinho A. A. y Gomes, L., 2021. Effects of the El Nino Southern Oscillation (ENSO) on fish assemblages in a Neotropical floodplain. En: Hydrobiologia, 848, pp. 1811–1823.

Bartram, J., 1999. The World Health Organization in Europe and its role in water and health. En: Environmentalist, 19(1), pp. 17–22. DOI: https://doi.org/10.1023/A:1006528704346

Benayache, N.Y.; Nguyen Quang, T.; Hushchyna, K.; McLellan, K.;Afri- Mehennaoui, F. Z. y Bouaïcha, N., 2019. An overview of cyanobacteria harmful algal bloom (CyanoHAB) issues in freshwater ecosystems. En: Gökçe, Didem, ed. Limnology - some new aspects of inland water ecology. DOI: 10.5772/intechopen.84155

Beron, L., 1990. Features of the limnological behavior of Salto Grande’s reservoir (Argentina-Uruguay). En: Ecological Modeling, 52, pp. 87–102.

Boltovskoy, D.; Bordet, F.; Leites, V.y Cataldo D., 2021. Multiannual trends (2004–2019) in the abundance of larvae of the invasive mussel Limnopernafortunei and crustacean zooplankton in a large South American reservoir. En: Austral Ecology, 46(8), pp. 1221-1235. DOI: https://doi.org/10.1111/aec.13058

Boltovskoy, D.; Correa, N.; Bordet, F.;Leites, V. y Cataldo, D., 2013. Toxic Microcystis (cyanobacteria) inhibit recruitment of the bloomenhancing invasive bivalve Limnopernafortunei. En: Freshwater Biology, 58(9), pp. 1968–1981. DOI: https://doi.org/10.1111/fwb.12184

Bonetto, A. A.; Canon Verón, M. y Roldán, D., 1981. Nuevos aportes al conocimiento de las migraciones de peces en el río Paraná. En: ECOSUR,16(8), pp. 29-40.

Bordet, F.; Fontanarrosa, M. S. y O’Farrell, I., 2017. Influence of light and mixing regime on bloom-forming phytoplankton in a subtropical reservoir. En: River Research and Applications, 33(8), pp. 1315–1326. DOI: https://doi.org/10.1002/rra.3189.

Bordet, F.; Collazos, G.; Irigoyen, M.; Simón, C.; Andrade, S. y Vidal, M., 2023.Incidencia de la ausencia de eventos hidrológicos sobre las floraciones de cianobacterias en el Embalse de Salto Grande. En: Universidad de Buenos Aires. IV Congreso Iberoamericano de Limnología y X Congreso Argentino de Limnología: Comprender, proteger y recuperar con equidad las aguas del siglo XXI. Buenos Aires, Argentina (31 de julio - 4 de agosto de 2023). Buenos Aires: UBA.

Borús, Juan; Giordano, Leandro; Vita Sánchez, Maximiliano; Núñez, Víctor; Contreras, Guillermo y Pereira Andrea, 2021. Posibles escenarios hidrológicos en la Cuenca del Plata durante el periodo diciembre 2021 / enero-febrero 2022 [En línea]. Buenos Aires: Ministerio de Obras Públicas. [Consulta: 08 de diciembre de 2021]. Disponible en: https://www.ina.gov.ar/archivos/alerta/Escenario2021_Diciembre.pdf

Camacho Guerreiro, A. I.; Amadio, S. A.; Fabre, N. N. y da Silva Batista, V., 2021. Exploring the effect of strong hydrological droughts and floods on populational parameters of Semaprochilodus insignis (Actinopterygii: Prochilodontidae) from the Central Amazonia. En: Environment, Development and Sustainability, 23, pp. 3338–3348.

Camilloni, I. y Barros V., 2000. The Parana River response to El Niño 1982–83 and 1997–98 events. En: Journal of Hydrometeorology,1, pp. 412–430.

Carolsfeld, J.; Harvey, B.; Ross, C. y Baer, A., 2004. Migratory fish of South America: biology, fisheries and conservation status [En línea]. Ottawa: International Development Research Centre y World Bank. [Consulta: 11 de marzo de 2022]. Disponible en: http://hdl.handle.net/10986/14929

Cataldo, D.; Leites, V.; Bordet, F. y Paolucci, E., 2022. Effects of El NiñoSouthern Oscillation (ENSO) on the reproduction of migratory fishes in a large South American reservoir. En: Hydrobiologia, 849(15), pp. 3259-3274. DOI: https://doi.org/10.1007/s10750-022-04941-6

Cataldo, D. y Paolucci, E., 2022. Estudios ambientales: análisis genéticos de muestras de larvas de peces (OC 7791). Informe técnico. Convenio entre Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) y la Comisión Técnica Mixta de Salto Grande. Informe final. (Informe inédito). CONICET y CTMSG.

Cataldo, D., 2015. Trophic relationships of Limnoperna fortunei with adult fishes. En: Boltovskoy, D., ed. Limnopernafortunei: the ecology, distribution and control of a swiftly spreading invasive fouling mussel. Cham: Springer International Publishing. pp. 231-248. ISBN: 978-3-319-13493-2.

Cataldo, D.; Gattás, F.; Leites, V.; Bordet, F. y Paolucci, E., 2020. Impact of a hydroelectric power plant on migratory fishes in the Uruguay river. En: River Research and Applications, 36(8), pp. 1598-1611. DOI: https://doi.org/10.1002/rra.3670

Chalar, G., 2006. Eutrophications dynamics on different temporary scales: Salto Grande Reservoir (Argentina-Uruguay). En: Tundisi, J. G., T. MatsumuraTundisi y C. S. Galli (eds). Eutrofizaçãona América do Sul: causas, consequencias e tecnologias de gerenciamento e controle. Instituto Internacional de Ecología e Gerenciamento Ambiental. [s.l.]: Academia Brasileira de Ciencias, Conselho Nacional de Desenvolvimento Científico e Tecnológico, Inter Academy Panel on International Issues, Inter American Network of Academies of Sciences. pp. 87–101.

Chalar, G.; De Leon L.; Brugnoli E.; Clemente J. y Paradiso M., 2002. Antecedentes y nuevos aportes al conocimiento de la estructura y dinámica del Embalse Salto Grande. En: Fernández-Cirelli, A. C. G., ed. El agua en Sudamérica: de la limnologia a la gestión en Sudamérica. Buenos Aires: Editorial Eudeba. pp. 123–142.

Chorus, I. y Bartram, J.,1999. Toxic cyanobacteria in water: a guide to their public health consequences monitoring and management. Boca Raton: Taylor y Francis Group. ISBN: 0-419-23930-8

Chorus, I. y Welker, M., 2021. Toxic cyanobacteria in water. 2a ed. Boca Raton: CRC Press. ISBN: 978-1-003-08144-9

Comisión Argentina-Paraguaya del río Paraná, 1994. La fauna íctica del río Paraná, tramo Argentino-Paraguayo. [s.l.]: COMIP. ISBN: 987-99076-1-2.

De León, L. y Chalar G., 2003. Abundancia y diversidad del fitoplancton en el Embalse de Salto Grande (Argentina– Uruguay). Ciclo estacional y distribución espacial. En: Limnetica, 22, pp. 103–113.

Delfino, R. yBaigún, C., 1985. Marcaciones de peces en el Embalse Salto Grande, Río Uruguay (Argentina - Uruguay). En: Rev. Asoc. Cienc. Nat. Litoral, 16(1), pp. 85-93.

De Resende, E. K., 2004. Migratory fishes of the Paraguay-Paraná basin excluding the upper Paraná basin. En: Carolsfeld, J.; Harvey, B.; Ross, C. y Baer, A. ed. Migratory fish of South America: Biology, fisheries and conservation status. [s.l.]: World Fisheries Trust, World Bank, IDRC. pp. 99-156. ISBN: 0-9683958-2-12

Di Rienzo, J. A.; Casanoves, F.; Balzarini, M. G.; Gonzalez, L.; Tablada, M. y Robledo, C. W., 2020. InfoStat [En línea]. Versión 2020. Córdoba: Universidad Nacional de Córdoba. [Consulta: 20 de febrero de 2023]. Disponible en: http://www.infostat.com.ar

Fabré, N.; Castello, L.; Isaac, V. J. yVandick, S. B., 2017. Fishing and drought effects on fish assemblages of the central Amazon Basin. En: Fisheries Research, 188, pp. 157–165.

Ferrari, G. M., 2020. El caudal y la temperatura del agua son los principales factores que regulan el fitoplancton y las floraciones de cianobacterias en un gran río subtropical. En: INNOTEC, (20), pp. 30–66. DOI: https://doi.org/10.26461/20.07

Fuentes, C. M. y Espinach Ros, A., 1998. Variación de la actividad reproductiva del sábalo, Prochiloduslineatus (Valenciennes, 1847), estimada por el flujo de larvas en el río Paraná Inferior. En: Natura Neotropicalis, 29, pp. 25-32.

Fuentes, C. M.;Brow, D. y Paolucci, E. M., 2003. Reproducción del sábalo (Prochiloduslineatus-Valenciennes, 1847) y otras especies de interés comercial y deportivo en el río Uruguay inferior, estimada por la abundancia de estadios larvales en la deriva. [s.l.]: INIDEP. (Informe Técnico N° 80/03)

Fuentes, C. M.; Gómez, M. I.; Brown, D. R.; Arcelus, A. y EspinachRos, A., 2016. Downstream passage of fish larvae at the Salto Grande dam on the Uruguay River. En: River Res. Applic., 32. pp. 1879–1889. DOI: 10.1002/rra.3030.

García, C. Z. y Martínez, C. B. R., 2012. Biochemical and genetic alterations in the freshwater neotropical fish Prochiloduslineatus after acute exposure to Microcystis aeruginosa. En: Neotropical Ichthyology, 10, pp. 613–622.

Huang, B.; Thorne P. W.; Banzon V. F.; Boyer, T.; Chepurin, G.; Lawrimore, J. H.; Menne M. J.; Smith, T. M.; Vose R. S. y Zhang, H. M., 2017. Extended reconstructed sea surface temperature, version 5 (ERSSTv5): upgrades, validations, and intercomparisons. En: Journal of Climate, 30, pp. 8179–8205.

Humphries, P. y Lake, P. S., 2000. Fish larvae and management of regulated rivers. En: Regulated Rivers Research & Management, 16, pp. 421-432.

King, A. J.; Humphries, P. y Lake, P. S., 2003. Fish recruitment on floodplains: the roles of patterns of flooding and life history characteristics. En: Canadian Journal of Fisheries and Aquatic Sciences, 60(7), pp. 773–786. DOI: https://doi.org/10.1139/f03‐057

Kruk, C.; Segura, A.; Piñeiro, G.; Baldassini, P.; Pérez-Becoña, L.; García-Rodríguez, F.; Perera, G. y Piccini, C., 2023. Rise of toxic cyanobacterial blooms is promoted by agricultural intensification in the basin of a large subtropical river of South America. En: Global Change Biology, 29, pp. 1774-1790. DOI: https://doi.org/10.1111/gcb.16587

Menni, R. C., 2004. Peces y ambientes en la Argentina continental. Vol. 5. Buenos Aires: Museo Argentino de Ciencias Naturales. ISSN: 1515-7652.

Mitsoura, A.; Kagalou, I.; Papaioannou, N.; Berillis, P.; Mente, E. y Papadimitriou, T., 2013. The presence of microcystins in fish Cyprinus carpio tissues. A histopathological study. En: International Aquatic Research, 5(1), pp. 1-8. DOI: https://doi.org/10.1186/2008-6970-5-8

Mol, J. H. D.; Resida, J. S.; Ramlal y Becker, C. R., 2000. Effects of El Niño-related drought on freshwater and brackish-water fishes in Suriname, South America. En: Environmental Biology of Fishes, 59, pp. 429–440.

Muñiz Saavedra, J. y Piacentino, G., 1991. Estudio del desarrollo ontogénico de Odontesthesbonariensis (Cuvier y Valenciennes 1835). En: Medio Ambiente, 11, pp. 61-68.

Nakatani, K.; Agostinho, A. A.; Baumgartner, G.; Bialetzki, A.; Sanches, P. V.; Cavicchioli-Makrakis, M. y Pavanelli, C. S., 2001. Ovos e larvas de peixes de água doce: desenvolvimento e manual de identificação. Maringá: EDUEM. ISBN: 85-85545-73-9

NOAA, 2021. Climate Prediction Center. Maryland: NOAA. [Consulta 3 de mayo de 2021]. Disponible en: https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php

O’Farrell, I.; Bordet, F. y Chaparro, G., 2012. Bloom forming cyanobacterial complexes co-ocurring in a subtropical large reservoir: validation of dominant eco-strategies. En: Hydrobiologia, 698(1), pp. 175-190. DOI: 10.1007/s10750-012-1102-4

Osswald, J.; Rellán, S.; Gago, A. y Vasconcelos, V., 2007. Toxicology and detection methods of the alkaloid neurotoxin produced by cyanobacteria, anatoxin-a. En: Environment International, 33(8), pp. 1070–1089. DOI: https://doi.org/10.1016/j.envint.2007.06.003

Paolucci, E. M. y Thuesen, E. V., 2015. Trophic relationships of Limnopernafortunei with larval fishes. En: Boltovskoy, D., ed. Limnopernafortunei: the ecology, distribution and control of a swiftly spreading invasive fouling mussel. Cham: Springer International Publishing. pp. 211-229. ISBN: 978-3-319-13493-2.

Paolucci, E. M.; Leites, V.; Cataldo, D. H. y Boltovskoy, D., 2017. Veligers of the invasive bivalve Limnopernafortunei in the diet of indigenous fish larvae in a eutrophic subtropical reservoir. En: Austral Ecology, 42(7), pp. 759–771. DOI: https://doi.org/10.1111/aec.12493

Penalba, O.C. y Vargas, W.M., 2008. Variability of low monthly rainfall in La Plata Basin. En: Met. Apps, 15, pp. 313-323. DOI: https://doi.org/10.1002/met.68

Quirós, R. y Luchini, L., 1983. Características limnológicas del embalse de Salto Grande III: Fitoplancton y su relación con parámetros ambientales. En: Revista de la Asociación de Ciencias Naturales del Litoral, 13, pp. 19–66.

Rangel, L. M.; Silva, L. H. S.; Rosa, P.; Roland, F. y Huszar, V. L. M., 2012. Phytoplankton is mainly controlled by hydrology and phosphorus concentrations intropicalhydroelectric reservoirs. En: Hydrobiologia, 693, pp. 13–28. DOI: 10.1007/s10750-012-1083-3

Reynalte-Tataje, D.A.; Agostinho, A.A.; Bialetzki, A.; Hermes-Silva, S.; Fernandes, R. Zaniboni-Filho, E., 2012. Spatial and temporal variation of the ichthyoplankton in a subtropical river in Brazil. En: Environ Biol Fish., 94, pp. 403–419. DOI: https://doi.org/10.1007/s10641-011-9955-3

Reynolds, C. S.y Jaworski, G. H. M., 1978. Enumeration of natural Microcystis populations. En: British Phycological Journal, 13(3), pp. 269–277. DOI: https://doi.org/10.1080/00071617800650331

Rodríguez, M. A. y Lewis, W. M., 1997. Structure of fish assemblages along environmental gradients in floodplain lakes of the Orinoco River. En: EcologicalMonographs, 67, pp. 109–128.

Saurral, R. I.; Barros, V. R. y Lettenmaier, D. P., 2008. Land use impact on the Uruguay River discharge. En: Geophys. Res. Lett., 35, pp. 215-235. DOI: 10.1029/2008GL033707.

Smolders, A. J. P.; Van Der Velde, G. y Roelofs, J. G. M., 2000. El Nino caused collapse of the sábalo fishery (Prochiloduslineatus, Pisces: Prochilodontidae) in a South American river. En: Naturwissenschaften, 87, pp. 30–32. DOI: 10.1007/s001140050004

Sverlij, S. B.; Espinach Ros, A. y Orti, G., 1993. Sinopsis de los datos biológicos y pesqueros del sábalo Prochiloduslineatus (Valenciennes, 1847). En: Sinopsis Sobre La Pesca, 154. ISBN: 9253033711

Turesson, H. y Bronmark, C., 2007. Predator-prey encounter rates in freshwater piscivores: effects of prey density and water transparency. En: Oecologia, 153, pp. 281–290. DOI: 10.1007/s00442-007-0728-9

Utermöhl, H., 1958. Zur Vervollkommung der quantitativen Phytoplankton Methodik. En: Mitteilungen der Internationalen Vereinigung der Theoretischen und Angewandten Limnologie, 9, pp. 1–38.

Venrick, E. L., 1978. How many cells to count? En: Sournia, A., ed. Phytoplankton manual. Paris: UNESCO Press. pp. 167–168. ISBN: 92-3-101572-9.

Villar, C. A. y Bonetto, C., 2000. Chemistry and nutrient concentrations of the Lower Paraná River and its floodplain marshes during extreme flooding. En: Archiv fur Hydrobiologie, 148(3), pp. 461-479.

Welcomme, R. L., 1979. Fisheries ecology of floodplain rivers. London: Longman. ISBN: 9780582463103, 0582463106

Welcomme, R. L., 1985. River fisheries. Roma: FAO. (FAO Fish. Tech. Pap. No. 262). ISBN: 92-5-102299-2

Zaniboni, Z. y Schulz, U. H., 2004. Migratory fishes of the Uruguay River. En: Carolsfeld, J.; Harvey, B., Ross, C. y Baer, A., eds. Migratory fishes of South America: biology, fisheries, and conservation status. Washington: World Fisheries Trust, World Bank, IDRC. ISBN: 0-9683958-2-12. pp. 157–194

Publicado

2024-06-14

Como Citar

Cataldo, D., Bordet, F., & Bruno, L. (2024). Efeito dos níveis extremos de água 2020-2023 na reprodução de peixes migratórios no rio Uruguay. INNOTEC, (27 ene-jun), e653. https://doi.org/10.26461/27.04

Edição

Seção

Artículos

Artigos mais lidos pelo mesmo(s) autor(es)