Phycocyanin assemblies onto nanostructured TiO2 for photovoltaic cells

Authors

  • Paula Enciso Laboratorio de Biomateriales, Facultad de Ciencias, Universidad de la República, Uruguay.
  • Lucía Minini Laboratorio de Biomateriales, Facultad de Ciencias, Universidad de la República, Uruguay. Laboratorio de Química Teórica y Computacional, Facultad de Ciencias, Universidad de la República, Uruguay
  • Beatriz Álvarez Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Uruguay
  • María Fernanda Cerdá Bresciano Laboratorio de Biomateriales, Facultad de Ciencias, UdelaR. Uruguay

DOI:

https://doi.org/10.26461/07.13

Keywords:

Solar energy, Nanostructures, Dyes

Abstract

The use of renewable energies is of increasing importance due to depletion of fossil fuel sources and environmental damages caused by their utilization. The energy available from the sun is clean and widely distributed. Solar cells are devices used to convert solar energy into electricity. Among them, dye sensitized solar cells are an interesting alternative to conventional silicon ones, because of their low cost and simple assembly process. They are made of a semiconductor with colored dyes adsorbed onto the surface that work as antennas to catch energy in the visible range of the spectra. In this work, nanostructured TiO2 was synthesized and the protein phycocyanin was used as dye. TiO2 was characterized by electron microscopy, X ray diffraction and infrared spectroscopy (FTIR). Phycocyanin was extracted from commercial Spirulina spp. capsules. The assembly process of the electrode covered with TiO2 and phycocyanin was controlled by cyclic voltammetry and FTIR. Results were in accordance with the assembling of an electrode sensitized with phycocyanin.

Downloads

Download data is not yet available.

References

ABAL, Gonzalo; CATALDO, José; D’ANGELO Martín; GUTIERREZ Angel. Mapa solar del Uruguay [En línea]. [Consulta: 15 de agosto de 2012]. Disponible en http://www.fing.edu.uy/if/solar/.

BAHADORI, Alireza; VUTHALURU, Hari B. Estimation of potential savings from reducing unburned combustible losses in coal-fired systems. En: Applied Energy. 2010, 87(12):3792-3799.

BARD Allen; FAULKNER, Larry. Electrochemical Methods: Fundamentals and applications. 2a ed. Estados Unidos: John Wiley and Sons, 2001.

BARD, Edouard. Greenhouse effect and ice ages: historical perspective. En: C. R. Geoscience. 2004, 336:603–638.

BISQUERT, Juan; CAHEN, David; HODES, Gary; RÜHLE, Sven; ZABAN, Arie. Physical chemical principles of photovoltaic conversion with nanoparticulate, mesoprous dye-sentitized solar cells. En: Journal Physics Chemistry. B. 2004, 108(24):8106-8118.

CHEN, Xiaobo; MAO, Samuel. Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. En: Chemical reviews. 2007, 107(7):2891-959.

DINCER, Ibrahim. Renewable energy and sustainable development: a crucial review, En: Renewable and Sustainable Energy Reviews, 2000, 4(2):157-175.

GRÄTZEL, Michael. Solar energy conversion by dye-sensitized photovoltaic cells. En: Inorganic chemistry. 2005, 44(20):6841-51.

HAGFELDT, Anders; GRÄTZEL, Michael. Molecular photovoltaics. En: Accounts on Chemical Research. 2000, 33:269-277.

KALOWEKAMO, Joseph; BAKER, Erin. Estimating the manufacturing cost of purely organic solar cells. En: Solar Energy.2009, 83(8):1224-1231.

KELLY, Nelson; GIBSON, Thomas. Increasing the solar photovoltaic energy capture on sunny and cloudy days. En: Solar Energy. 2011, 85(1):111-125.

LIU, Chunqing; FU, Lei; ECONOMY, James. A simple, template-free route for the synthesis of mesoporous titanium dioxide materials. En: Journal of Materials Chemistry. 2004, 14(7):1187-1189.

MAYO, Dana; MILLER, Foil; HANNAH, Robert. Course notes on the interpretation of infrarred and Raman spectra. New Jersey: John Wiley and Sons, 2003.

NAZEERUDDIN, Mohammad; BARANOFF, Etienne; GRÄTZEL, Michael. Dye-sensitized solar cells: A brief overview. En: Solar Energy. 2011, 85(6):1172-1178.

PIELKE, Roger. Misdefining ‘‘climate change’’: consequences for science and action. En: Environmental Science & Policy.2005,8:548-561.

POORTINGA, Wouter; SPENCE, Alexa; WHITMARSH, Lorraine; CAPSTICK, Stuart; PIDGEON, Nick F. Uncertain climate: An investigation into public scepticism about anthropogenic climate change. En: Global Environmental Change.2011, 21(3):1015-1024.

THOMPSON Tracy L; YATES John T. Surface science studies of the photoactivation of TiO2. New photochemical processes. En: Chemical Reviews. 2006,106:4428-4453.

THOREN, Katie; CONNELL, Katelyn. The free energy dissociation of oligomeric structure phycocyanin is not liner with denaturant. En: Biochemistry. 2006, 45:12050-12059.

YAN, Shi-Gan; ZHU, Li-Ping. Single step chromatography for simultaneous purification of c-phycocyanin and allophycocyanin with high purity and recovery from Spirulina (Arthrospira) platensis. En: Journal of Applied Phycology. 2011, 23(1), 1-6.

Published

2012-10-22

How to Cite

Enciso, P., Minini, L., Álvarez, B., & Cerdá Bresciano, M. F. (2012). Phycocyanin assemblies onto nanostructured TiO2 for photovoltaic cells. INNOTEC, (7 ene-dic), 69–74. https://doi.org/10.26461/07.13

Issue

Section

Articles

Most read articles by the same author(s)