Solubility loss of whey protein isolate, calcium caseinate, lactose and inulin model systems by action of composition and heat treatment

Authors

  • Mariana Rodríguez Arzuaga Latitud, Fundación LATU, Montevideo, Uruguay. Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), La Plata, Buenos Aires, Argentina https://orcid.org/0000-0001-7491-409X
  • María Cristina Añón Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), La Plata, Buenos Aires, Argentina https://orcid.org/0000-0002-9900-7805
  • Analía Graciela Abraham Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), La Plata, Buenos Aires, Argentina https://orcid.org/0000-0002-2632-2177

DOI:

https://doi.org/10.26461/19.06

Keywords:

denaturation, aggregation, infant formulae, proteins, milk

Abstract

Whey proteins are heated during production of infant formulae. The denaturation and aggregation of whey proteins can reduce their solubility, with functional, technological and nutritional implications. In the current work, the effect of heat treatment and presence of casein, lactose and inulin, at the proportions used during production of infant formula, on the protein solubility, was studied. Aqueous WPI dispersions with or without calcium caseinate (CAS), inulin (INUL) and lactose (LAC), were prepared. Unheated (UH) and heated (HT) dispersions at 66, 75 and 85ºC for 30 and 60 min were analyzed. The UH systems with the highest solubility were WP (89.3±2.0 %) and WP-INUL (89.6±1.8 %). Solubility of WP decreased with HT from 75ºC-30 min, reaching the minimum solubility (41.7±1.2 %) after 85ºC-60 min. WP-INUL showed the same trend. Solubility of WP-LAC decreased with HT, although the solubility loss after HT 75ºC-60 min was lower than in the system without lactose. CAS presence prevented the loss of protein solubility, which increased with HT until 75ºC-60 min (reaching 100 % in the WP-CAS system).

Downloads

Download data is not yet available.

References

Anandharamakrishnan, C., Rielly, C.D. y Stapley, A.G.F., 2008. Loss of solubility of α - lactalbumin and β - lactoglobulin during the spray drying of whey proteins. En: LWT., 41, pp.270 - 277.

Anema, S.G., Kim Lee, S. y Klostermeyer, H., 2006. Effect of protein, nonprotein - soluble components, and lactose concentrations on the irreversible thermal denaturation of β - Lactoglobulin and α - Lactalbumin in skim milk. En: Journal of Agricultural and Food Chemistry, 54(19), pp.7339 - 7348.

Boehm, G., 2013. Soluble and insoluble fibre in infant nutrition. En: Delcour, J.A. y Poutanen, K., eds. Fibre - rich and wholegrain foods. Oxford: Woodhead Publishing, pp.421 - 449. ISBN: 0857090380.

Bouaouina, H., Desrumaux, A., Loisel, C. y Legrand, J., 2006. Functional properties of whey proteins as affected by dynamic high - pressure treatment. En: International Dairy Journal, 16, pp.275 - 284.

Bradford, M.M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein - dye binding. En: Analytical Biochemistry, 72, pp.248 - 254.

Cardoso, H.B., Wierenga, P.A., Gruppen, H. y Schols, H.A., 2019. Maillard induced aggregation of individual mil proteins and interactions involved. En: Food Chemistry, 276, pp.652 - 661.

de Wit, J.N., 1998. Nutritional and functional characteristics of whey proteins in food products. En: Journal of Dairy Science, 81, pp.597 -608.

de Wit, J.N. y Klarenbeek, G., 1984. Effects of various heat treatments on structure and solubility of whey proteins. En: Journal of Dairy Science, 67, pp.2701 - 2710.

Dissanayake, M., Kasapis, S., George, P., Adhikari, B., Palmer, M. y Meurer, B., 2013. Hydrostatic pressure effects on the structural properties of condensed whey protein/lactose systems. En: Food Hydrocolloids, 30, pp.632 - 640.

Fenelon, M.A., Hickey, R.M., Buggy, A., McCarthy, N. y Murphy, E.G., 2019. Whey proteins in infant formula. En: Deeth, H.C. y Bansal, N., eds. Whey proteins. Cambridge: Academic Press, pp.439 - 494. ISBN: 9780128121245.

Food and Drug Administration, 2017. Grade “A” pasteurized milk ordinance. Rockville: FDA.

Fox, P.F., Uniacke - Lowe, T., McSweeney, P.L.H. y O’Mahony, J.A., 2015. Dairy chemistry and biochemistry. 2da ed. New York: Springer. ISBN: 978 - 3 - 319- 14892 - 2.

Gaspard, S.J., Auty, M.A.E., Kelly, A.L. y Mahony, J.A.O., 2017. Isolation and characterisation of k - casein / whey protein particles from heated milk protein concentrate and role of k - casein in whey protein aggregation. En: International Dairy Journal, 73, pp.98–108.

Huppertz, T., 2016. Heat stability of milk. En: McSweeney, P.L.H. y O’Mahony, J.A., eds. Advanced dairy chemistry. Vol. 1B: proteins: applied aspects. 4ta ed. New York: Springer. pp.179-196. ISBN: 978-1 - 4939 - 2799 - 9.

International Organization for Standarization, 2014. ISO 8968-1: Milk and milk products. Determination of nitrogen content. Part 1. Determination of nitrogen content using the Kjeldahl method. Ginebra: ISO.

Kamizake, N.K.K., Goncalves, M.M., Zaia, C.T.B.B. y Zaia, D.A.M., 2003. Determination of total proteins in cow milk powder samples: a comparative study between the Kjeldahl method and spectrophotometric methods. En: Journal of Food Composition and Analysis, 16, pp.507 - 516.

Kehoe, J.J. y Foegeding, E.A., 2011. Interaction between β - casein and whey proteins as a function of ph and salt concentration. En: Journal of Agricultural and Food Chemistry, 59, pp.349–355.

Kruger, N.J., 1994. The Bradford method for protein quantitation. En: Walker, J.M., ed. Basic protein and peptide protocols. Methods in molecular biology. Totowa: Humana Press. pp. 9-15. ISBN: 0896032698.

Kunz, C. y Rudloff, S., 2008. Potential anti - inflammatory and anti - infectious effects of human milk oligosaccharides. En: Bösze, Z., ed. Bioactive components of milk. New York: Springer. pp.455 - 466. (Advances in experimental medicine and biology). ISBN: 1441925457.

Mounsey, J.S. y O’Kennedy, B.T., 2009. Stability of β - lactoglobulin/micellar casein mixtures on heating in simulated milk ultrafiltrate at pH 6.0. En: International Journal of Dairy Technology, 62, pp.493–499.

Packard, V.S. y Morris, H.A., 1984. Effect of processing on whey protein functionality. En: Journal of Dairy Science, 67, pp.2723 - 2733.

Pellegrino, L., Masotti, F., Cattaneo, S., Hogenboom, J.A. y de Noni, I., 2013 Nutritional quality of milk proteins. En: McSweeney, P.M.H. y Fox, P.F., eds. Advanced dairy chemistry. Volume 1A: proteins: basic aspects. 4ta ed. New York: Springer, pp.515 - 538. ISBN: 978-1 - 4614 - 4713 - 9.

Sabater, C., Prodanov, M., Olano, A., Corzo, N. y Montilla, A., 2016. Quantification of prebiotics in comercial infant formulas. En: Food Chemistry, 194, pp.6-11. Unión Europea. Reglamento Delegado (UE) 2016/127, del 25 de setiembre de 2015. Diario Oficial de la Unión Europea, 02 de febrero de 2016, pp. L 25/1 - L 25/29

Wijayanti, H.B., Brodkorb, A., Hogan, S.A. y Murphy, E.G., 2019. Thermal denaturation, aggregation, and methods of prevention. En: Deeth, H.C. y Bansal, N., eds. Whey proteins. Cambridge: Academic Press, pp.185 - 247. ISBN:

Published

2019-12-13

How to Cite

Rodríguez Arzuaga, M., Añón, M. C., & Abraham, A. G. (2019). Solubility loss of whey protein isolate, calcium caseinate, lactose and inulin model systems by action of composition and heat treatment. INNOTEC, (19 ene-jun), 23–36. https://doi.org/10.26461/19.06

Issue

Section

Articles

Most read articles by the same author(s)