Potencial probiótico de Lactococcus lactis GU967439 aislado de leche cruda: estudios in vitro

Autores/as

  • Camila Moreira Departamento de Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad de la República, Montevideo, Uruguay y Departamento de Producción Animal, IPAV, Facultad de Veterinaria, Universidad de la República, San José, Uruguay. https://orcid.org/0000-0001-5776-2688
  • Silvana Carro Techera Departamento de Producción Animal, IPAV, Facultad de Veterinaria, Universidad de la República, San José, Uruguay https://orcid.org/0000-0001-8223-0085

DOI:

https://doi.org/10.26461/27.03

Palabras clave:

bacterias ácidolácticas, resistencia gastrointestinal, actividad antimicrobiana, bacteriocinas, resistencia a antibióticos

Resumen

Las cepas probióticas nativas son elegidas para la producción de productos lácteos funcionales debido a que presentan ventajas tecnológicas. La selección preliminar se basa en ensayos in vitro que predicen su seguridad y propiedades funcionales. El objetivo del presente estudio fue evaluar in vitro la sensibilidad a antibióticos, el pasaje por el tracto gastrointestinal y la actividad antimicrobiana de la cepa nativa Lactococcus lactis GU967439, aislada de leche cruda proveniente de una quesería artesanal de Colonia, Uruguay. Se utilizó a L. lactis ATCC N° 11454 como referencia. L. lactis GU967439 fue sensible a todos los antibióticos activos frente a Gram positivos. Además, fue resistente a la simulación del jugo gástrico a pH 3, pancreatina y bilis. El sobrenadante libre de
células de L. lactis GU967439 inhibió el crecimiento de Staphylococcus aureus ATCC 6538, Staphylococcus aureus ATCC 29213, Enterococcus faecalis ATCC 29212, Listeria innocua ATCC 33090, Streptococcus bovis 2.5 (WT) y presentó mejor actividad que la cepa L. lactis ATCC N° 11454. Sin embargo, ninguna de las cepas inhibió a los microorganismos Gram negativos evaluados (Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 9027). Estos resultados dan base a futuros trabajos que permitan continuar  caracterizando el potencial probiótico de L. lactis GU967439. 

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Atanassova, M.; Choiset, Y.; Dalgalarrondo, M.; Chobert, J.; Dousset, X.; Ivanova, I. y Haertle, T., 2003. Isolation and partial biochemical characterization of a proteinaceous anti-bacteria and anti-yeast compound produced by Lactobacillus paracasei subsp. paracasei strain M3. En: International Journal of Food Microbiology, (87), pp. 63-73. DOI: https://doi.org/10.1016/S0168-1605(03)00054-0

Cetinkaya, F.; Coplu, C.; Simsek, H.; Mus, T.T. y Cibik, R., 2012. Antibiotic susceptibility of Lactococcus isolated from Turkish raw milk cheeses. En: Medycyna Wet, (68), pp. 49-53.

Charteris, W. P.; Kelly, P. M.; Morelli, L. y Collins, J. K., 1998a. Antibiotic susceptibility of potentially probiotic Lactobacillus species. En: Journal of food protection, (61), pp. 1636-1643. DOI: https://doi.org/10.4315/0362-028X-61.12.1636

Charteris, W.P.; Kelly, P.M.; Morelli, L. y Collins, J.K.,1998b. Development and application of an in vitro methodology to determine the transit tolerance of potentially probiotic Lactobacillus and Bifidobacterium species in the upper human gastrointestinal tract. En: Journal of applied microbiology, (84), pp. 759-768. DOI: https://doi.org/10.1046/j.1365-2672.1998.00407.x

Clinical & Laboratory Standards Institute (CLSI), 2009. Performance standards for antimicrobial susceptibility testing. 19th International Supplement, M100–MS19. Pittsburgh: CLSI

Dimitrellou, D.; Kandylis, P.; Petrovic, T.; Dimitrijevic-Brankovic, S.I.; Levic, S.; Nedovic, V. y Kourkoutas, Y., 2016. Survival of spray dried microencapsulated Lactobacillus casei ATCC 393 in simulated gastrointestinal conditions and fermented milk. En: LWT Food Science and Technology, (71), pp. 169–174. DOI: https://doi.org/10.1016/j.lwt.2016.03.007

FAO y WHO, 2002. Guidelines for the evaluation of probiotics in food. Ontario: FAO y WHO. Fraga, M., 2008. Vaginal lactic acid bacteria in the mare: evaluation of the probiotic potential of native Lactobacillus spp. and Enterococcus spp. strains. En: Antonie van Leeuwenhoek; (93), pp. 71-78. DOI: https://doi.org/10.1007/s10482-007-9180-4

Fraga, M.; Perelmuter, K.; Giacaman, S. S.; Zunino, P. M. y Carro, S. B., 2013. Antimicrobial properties of lactic acid bacteria isolated from Uruguayan artisan cheese. En: Food Science and Technology, (33), pp. 801-804. DOI: https://doi.org/10.1590/S0101-20612013000400029

González - Revello, Á.; Carro, S.; Cal, K.; Giacaman, S. y Aldrovandi, A., 2016. Lactococcus lactis autóctono: evaluación del efecto antilisterial y de propiedades sensoriales en quesos tipo Cuartirolo. En: Innotec, (12), pp. 15-26. DOI: https://doi.org/10.26461/12.02

Haghshenas, B.; Abdullah, N.; Nami, Y.; Radiah, D.; Roseli, R. y Khosroushahi, Y., 2014. Different effects of two newly-isolated probiotic Lactobacillus plantarum 15HN and Lactococcus lactis subsp. Lactis 44Lac strains from traditional dairy products on cancer

cell lines. En: Anaerobe, (30), pp. 51-59. DOI: https://doi.org/10.1016/j.anaerobe.2014.08.009

Hernández, M., 2021. Identificación y caracterización de una sustancia inhibidora tipo bacteriocina producida por una cepa nativa de Lactococcus lactis aislada de queserías artesanales. Montevideo: Universidad de la República. Facultad de Ciencias. (Tesis de Grado).

Hladíková, Z.; Smetankova, J.; Greif, G. y Greifova, M., 2012. Antimicrobial activity of selected lactic acid cocci and production of organic acids. En: Acta Chimica Slovaca, (5), pp. 80-85. DOI: https://doi.org/10.2478/v10188-012-0013-3

Kimoto-Nira, H.; Suzuki, C.; Sasaki, K.; Kobayashi, M. y Mizumachi, K., 2010. Survival of a Lactococcus lactis strain varies with its carbohydrate preference under in vitro conditions simulated gastrointestinal tract. En: International Journal of Food Microbiology, (143), pp. 226–229. DOI: https://doi.org/10.1016/j.ijfoodmicro.2010.07.033

Khemariya, P.; Singh, S.; Nath, G. y Gulati, A. K., 2013. Isolation, identification, and antibiotic susceptibility of nisC Lactococcus lactis from dairy and non-dairy sources. En: Czech Journal of Food Sciences, (31), pp. 323–331. DOI: https://doi.org/10.17221/316/2012-CJFS

Lorenzo, G. y Raffo, M., 2015. Lactococcus lactis nativo: caracterización de la producción de bacteriocinas, propiedades tecnológicas y efecto antimicrobiano sobre Listeria innocua. Montevideo: Universidad de la República. Facultad de Veterinaria. (Tesis de Grado).

Mainville, I.; Arcand, Y. y Farnworth, E. R., 2005. A dynamic model that simulates the human upper gastrointestinal tract for the study of probiotics. En: International Journal of Food Microbiology, (99), pp. 287-296. DOI: https://doi.org/10.1016/j.ijfoodmicro.2004.08.020

Maragkoudakis, P. A.; Zoumpopoulou, G.; Miaris, C.; Kalantzopoulos, G.; Pot, B. y Tsakalidou, E., 2006. Probiotic potential of Lactobacillus strains isolated from dairy products. En: International Dairy Journal, 16, pp. 189–199. DOI: https://doi.org/10.1016/j.idairyj.2005.02.009

Monteagudo-Mera, A.; Rodríguez-Aparicio, L.; Rúa, J.; Martínez- Blanco, H.; Navasa, N. y García-Armesto, M. R., 2012. In vitro evaluation of physiological probiotic properties of different lactic acid bacteria strains of dairy and human origin. En: Journal of Functional Foods, (4), pp. 531–541. DOI: https://doi.org/10.1016/j.jff.2012.02.014

Narimani, T.; Tarinejad, A. y Hejazi, M. A., 2015. Isolation and biochemical and molecular identification of Lactobacillus bacteria with probiotic potential from traditional cow milk and yogurt of Khoi city. En: Journal of Food Science & Technology, 12(48).

Padmavathi, T.; Bhargavi, R.; Priyanka, P. R.; Niranjan, N. R. y Pavitra, P. V., 2018. Screening of potential probiotic lactic acid bacteria and production of amylase and its partial purification. En: Journal of Genetic Engineering and Biotechnology, (16), pp. 357-362. DOI: https://doi.org/10.1016/j.jgeb.2018.03.005

Rodríguez, I., 2016. Implementación de una técnica de purificación de la/s bacteriocina/s producidas por Lactococcus lactis nativo. Montevideo: Universidad de la República. Facultad de Veterinaria. (Tesis de Grado).

Rolim, F. R.; Neto, O. C. F.; Oliveira, M. E. G.; Oliveira, C. J. y Queiroga, R. C., 2020. Cheeses as food matrixes for probiotics: in vitro and in vivo tests. En: Trends in Food Science & Technology, (100), pp. 138-154. DOI: https://doi.org/10.1016/j.tifs.2020.04.008

Ruiz, L.; Margolles, A. y Sánchez, B., 2013. Bile resistance mechanisms in Lactobacillus and Bifidobacterium. En: Frontiers in Microbiology, (4), pp. 396. DOI: https://doi.org/10.3389/fmicb.2013.00396

Selvin, J.; Maity, D.; Sajayan, A. y Kiran, G. S., 2020. Revealing antibiotic resistance in therapeutic and dietary probiotic supplements. En: Journal of Global Antimicrobial Resistance, (22), pp. 202-205.

Schillinger, U. y Lucke, F. 1991 El empleo de bacterias lácticas como cultivos protectores en productos cárnicos. En: Fleischwirtsch, (1), pp. 35-40.

Solieri, L.; Bianchi, A.; Mottolese, G.; Lemmetti, F. y Giudici, P., 2014. Tailoring the probiotic potential of non-starter Lactobacillus strains from ripened Parmigiano Reggiano cheese by in vitro screening and principal component analysis. En: Food Microbiology, (38), pp. 240–249. DOI: https://doi.org/10.1016/j.fm.2013.10.003

Stoyanova, L. G.; Ustyugova, E. A. y Netrusov, A. I., 2012. Antibacterial metabolites of lactic acid bacteria: their diversity and properties. En: Applied Biochemistry and Microbiology, (48) pp. 229-243.

Torres, S.; Fabersani, E.; Marquez, A. y Gauffifin-Cano, P., 2019. Adipose tissue inflammation and metabolic syndrome. The proactive role of probiotics. En: European Journal of Nutrition, (58), pp. 27–43.

Ture, M. y Boran, H., 2015. Phenotypic and genotypic antimicrobial resistance of Lactococcus sp. strains isolated from rainbow trout (Oncorhynchus mykiss). En: Journal of Veterinary Research, (59) pp. 37-42. DOI: https://doi.org/10.1515/bvip-2015-0006

Vizoso-Pinto, M. G.; Franz, C. M.; Schillinger, U. y Holzapfel, W. H. 2006. Lactobacillus spp. with in vitro probiotic properties from human feces and traditional fermented products. En: International Journal of Food Microbiology, (109), pp.205–214. DOI: https://doi.org/10.1016/j.ijfoodmicro.2006.01.029

Yongkiettrakul, S.; Maneerat, K.; Arechanajan, B.; Malila, Y.; Srimanote P. y Gottschalk, M., 2019. Antimicrobial susceptibility of Streptococcus suis isolated from diseased pigs, asymptomatic pigs, and human patients. En: Thailand. BMC Veterinary Research, (15),

pp. 1-12.

Zhou, X.; Wang, Y.; Yao, J. y Li, W., 2010. Inhibition ability of probiotic, Lactococcus lactis, against A. hydrophila and study of its immunostimulatory effect in tilapia (Oreochromis niloticus). En: International Journal of Engineering, Science And Technology, (2), pp. 73-80.

Descargas

Publicado

2024-04-30

Cómo citar

Moreira, C., & Carro Techera, S. (2024). Potencial probiótico de Lactococcus lactis GU967439 aislado de leche cruda: estudios in vitro. INNOTEC, (27 ene-jun), e648. https://doi.org/10.26461/27.03

Número

Sección

Artículos

Artículos más leídos del mismo autor/a