Tintas anti-incrustantes derivadas de plantas terrestres

uma solução segura para o meio ambiente no controle da bioincrustação

Autores

DOI:

https://doi.org/10.26461/22.01

Palavras-chave:

compostos naturais, extrato natural, fitoquímicos, invertebrados, mexilhão

Resumo

Invertebrados (por exemplo, cirripédios, mexilhões) são os principais responsáveis ​​pelos prejuízos econômicos industriais e navais da bioincrustação, agravados pela colonização de espécies invasoras (por exemplo, mexilhão dourado, Limnoperna fortunei). Muitas estratégias têm sido usadas para controlar a bioincrustação. No entanto, não são eficientes ou causam alta mortalidade de organismos aquáticos, incluindo as tintas anti-incrustantes. Atualmente, com a necessidade de preservar a saúde humana e ambiental têm se concentrado na investigação de novos agentes naturais para substituir as moléculas sintéticas tóxicas dessas tintas. O estudo de produtos naturais bioativos de plantas terrestres tem sido uma opção promissora no campo clínico e elas podem ter o mesmo potencial no campo aquático. Desse modo, a principal pergunta deste estudo é: Como selecionar os extratos e compostos mais promissores? Este trabalho analisou artigos publicados sobre este tópico, com o objetivo de destacar as informações necessárias para focalizar a pesquisa em anti-incrustantes derivados de plantas terrestres. Foram examinados 29 artigos de 1990 a 2020. Os produtos naturais derivados de plantas terrestres têm um grande potencial como anti-incrustantes sustentáveis, inibindo a colonização de micro e macro-organismos. Compostos alcalóides e flavonóides das famílias Zingiberaceae, Myrtaceae e Fagaceae já apresentaram resultados promissores contra mexilhões.

Downloads

Não há dados estatísticos.

Referências

Agostini, V.O., Ritter, M.N., Macedo, A.J. Muxagata, E. y Erthal, F., 2017. What determines sclerobiont colonization on marine mollusk shells? En: PLoS ONE, 12, e0184745. https://doi.org/10.1371/journal.pone.0184745

Agostini, V.O., Macedo, A.J. y Muxagata, E., 2018. O papel do biofilme bacteriano no acoplamento bento-pelágico, durante o processo de bioincrustação. En: Revista Liberato, 19(31), pp.1–134. https://doi.org/10.31514/rliberato.2018v19n31.p23

Agostini, V.O., Macedo, A.J. Muxagata, E. Silva, M.V.da y Pinho, G.L.L., 2019. Natural and non-toxic products from Fabaceae Brazilian plants as a replacement for traditional antifouling biocides: an inhibition potential against initial biofouling. En: Environmental Science and Pollution Research, 26, pp.27112–27127 https://doi.org/10.1007/s11356-019-05744-4

Agostini, V.O., Macedo, A.J. Muxagata, E. Silva, M.V.da y Pinho, G.L.L., 2020. Non-toxic antifouling potential of Caatinga plant extracts: effective inhibition of marine initial biofouling. En: Hydrobiologia, 847, pp.45–60. https://doi.org/10.1007/s10750-019-04071-6

Amara, I., Miled, W., Slama, R.B. y Ladhari, N., 2018. Antifouling processes and toxicity effects of antifouling paints on marine environment. A review. En: Environmental Toxicology and Pharmacology, 57, pp.115–130. https://doi.org/10.1016/j.etap.2017.12.001

Angarano, M-B., McMahon, R.F., Hawkins, D.L. y Schetz, J.A., 2007. Exploration of structure-antifouling relationships of capsaicin-like compounds that inhibit zebra mussel (Dreissena polymorpha) macrofouling. Biofouling: En: The Journal of Bioadhesion and Biofilm Research, 23(5), pp.295-305. https://doi.org/10.1080/08927010701371439

Agra, M.F., Freitas, P.F. y Barbosa-Filho, J.M., 2007. Synopsis of the plants known as medicinal and poisonous in Northeast of Brazil. En: Brazilian Journal of Pharmacognosy, 17, pp.114-140. https://doi.org/10.1590/S0102-695X2007000100021

Appezzato-da-Glória, B. y Carmello-Guerreiro, S.M., 2006. Anatomia vegetal. 2a ed. Viçosa: Editora UFV. 430 p.

Azis, P.K.A., Al-Tisan, I. y Sasikumar, N., 2001.Biofouling potential and environmental factors of seawater at a desalination plant intake. En: Desalination, 135, pp.69–82. https://doi.org/10.1016/S0011-9164(01)00140-0

Bellotti, N., Amo, B. y Romagnoli, R., 2014. Assessment of tannin antifouling coatings by scanning electronmicroscopy. En: Progress in Organic Coatings, 77, pp.1400–1407. https://doi.org/10.1016/j.porgcoat.2014.05.004

Bogdan, S., Deya, C., Micheloni, O., Bellotti, N. y Romagnoli, R. Natural products to control biofilm on painted surfaces. En: Pigment & Resin Technology, 47(2), pp.180-187. https://doi.org/10.1108/PRT-01-2017-0004

Boltovskoy, D. y Correa, C., 2015. Ecosystem impacts of the invasive bivalve Limnopernafortunei (golden mussel) in South America. En: Hydrobiologia, 746, pp.81–95. https://doi.org/10.1007/s10750-014-1882-9

Boy, H.I.A, Rutilla, A.J.H., Santos, K.A., Ty, A.M.T., Yu, A.I., Mahboob, T., Tangpoong, J. y Nissapatorn, V., 2018. Recommended medicinal plants as source of natural products: a review. En: Digital Chinese Medicine, 1(2), pp.131-142. https://doi.org/10.1016/S2589-3777(19)30018-7

Breitig, G., 1965. The use of ultrasound in the eradication of larvae. Greiswald: University Greiswald. (Tesis de doctorado).

Buchanan, R.B., Gruissem, W. y Jones, R.L., 2000. Biochemistry and molecular biology of plants. Rockville: American Society of Plant Physiologists. 1280 p.

Cabral, R.S., Sartori, M.C., Cordeiro, I., Queiroga, C.L., Eberlin, M.N., Lago, J.H.G., Moreno, P.R.H. y Young, M.C.M., 2012. Anticholinesterase activity evaluation of alkaloids and coumarin from the stems of Conchocarpusfontanesianus. En: Brazilian Journal of Pharmacognosy, 22(2), pp.374-380. https://doi.org/10.1590/S0102-695X2011005000219

Cho, J.Y., Kwon, E.-H., Choi, J.-S., Hong, S.-Y., Shin, H.-W. y Hong, Y.-K., 2001. Antifouling activity of seaweed extracts on the green alga Enteromorpha prolifera and the mussel Mytilus edulis. En: Journal of Applied Phycology, 13(2), pp.117–125. https://doi.org/10.1023/A:1011139910212

Clasen, A. y Kesel, A.B., 2019. Microstructural surface properties of drifting seeds—a model for non-toxic antifouling solutions. En: Biomimetics, 4, 37. https://doi.org/10.3390/biomimetics4020037

Cordell, G., 1981. Introduction to alkaloids: a biogenetic approach. Nueva York: Wiley and Sons. 1055 pp.

Correia, S.de J., David, J.P. y David, J.M., 2006. Metabólitos secundários de espécies de Anacardiaceae. En: Quimica Nova, 6, pp.1287-1300. https://doi.org/10.1590/S0100-40422006000600026

Cseke, L.J., Kirakosyan, A., Kaufman, P.B., Warber, S.L., Duke, J.A., Brielmann, H.L., 2006. Natural products from plants. 2ª ed. Boca Ratón: CRC Press. 569 p.

Cui, Y.T., Teo, S.L.M., Leong, W. y Chai, C.L.L., 2014. Searching for “Environmentally-Benign” antifouling biocides. En: International Journal of Molecular Sciences, 15, pp.9255-9284. https://doi.org/10.3390/ijms15069255

Dahms, H.U. y Dobretsov, S., 2017. Antifouling compounds from marine macroalgae. En: Marine Drugs, 15(9), pp.265. https://doi.org/10.3390/md15090265

Desai, D.V., 2008. Impact of Irgarol 1051 on the larval development and metamorphosis of Balanus amphitrite Darwin, the diatom Amphora coffeaformis and natural biofilm. En: Biofouling: The Journal of Bioadhesion and Biofilm Research, 24(5), pp.393–403. https://doi.org/10.1080/08927010802339764

Devi, P., Solimabi, W., D’Souza, L., Sonak, S., Kamat, S.Y. y Singbai, S.Y.S., 1997. Screening of some marine plants for activity against marine fouling bacteria. En: Botanica Marina, 40, pp.87–91. https://doi.org/10.1515/botm.1997.40.1-6.87

Di Stasi, L.C. y Hiruma-Lima, C.A., 2002. Plantas medicinais na Amazônia e na Mata Atlântica. 2. San Pablo: São Paulo. 608 p.

Dobretsov, S. y Rittschof, D., 2020. Love at first taste: induction of larval settlement by marine microbes. En: International Journal of Molecular Sciences, 21(3), pp.731.https://doi.org/10.3390/ijms21030731

Ekiert, H. y Kisiel, W., 1997. Coumarins and alkaloids in shoot culture of Ruta graveolens. En: Acta Societatis Botanicorum Poloniae, 66(3-4), pp.329-332. https://doi.org/10.5586/asbp.1997.039

Etoh, H., Kondoh, T., Noda, R., Singh, I.P., Sekiwa, Y., Morimitsu, K. y Kubota, K., 2002. Shogaols from Zingiber officinale as Promising Antifouling Agents. En: Bioscience, Biotechnology, and Biochemistry, 66(8), pp.1748-1750. https://doi.org/10.1271/bbb.66.1748

Feng, D.Q., Ke, C.H., Lu, C.Y. y Li, S.J., 2009. Herbal plants as a promising source of natural antifoulants: evidence from barnacle settlement inhibition. En: Biofouling: The Journal of Bioadhesion and Biofilm Research, 25(3), pp.181-190, https://doi.org/10.1080/08927010802669210

Feng, D.Q., He, J., Chen, S.Y., Su, P., Ke, P.H. y Wang, W., 2018. The plant alkaloid camptothecin as a novel antifouling compound for marine paints: laboratory bioassays and field Trials. En: Marine Biotechnology, 20(5), pp.623-638. https://doi.org/10.1007/s10126-018-9834-4

Fernández-Niño M, e Islam Z., 2017.The potential of synthetic biology for improving environmental quality and human health in developing countries. En: Salud UIS, 49(1), pp.10 p.

Freckelton, M.-L., Nedved, B.T. y Hadfield, M.G., 2017. Induction of invertebrate larval settlement; different bacteria, different mechanisms? En: Scientific Reports, 7, pp.42557. https://doi.org/10.1038/srep42557

Fujita, D.S., Takeda, A.M., Coutinho, R. y Fernandes, F.C., 2015. Influence of antifouling paint on freshwater invertebrates (Mytilidae, Chironomidae and Naididae): Density, richness and composition. En: Brazilian Journal of Biology, 75(4), suppl. 1, pp.S70-S78. https://doi.org/10.1590/1519-6984.05114

Giulietti, A.M., Harley, R.M., Queiroz, L.P., Wanderley, M.G. y Berg, C.V.B., 2005. Biodiversidade e conservação das plantas no Brasil [En línea]. En: Megadiversidade, 1, pp.52-60. [Consulta: abril de 2020]. Disponible en:http://www.agencia.cnptia.embrapa.br/Repositorio/BIOD_ConservacaoID-eWNPNpKEJw.pdf

Gopikrishnan, V., Radhakrishnan, M., Pazhanimurugan, R., Shanmugasundaram, T. y Balagurunathan, R., 2015. Bioprospecting of actinobacteria from mangrove and estuarine sediments for antifouling compounds [En línea]. En: Journal of Chemical and Pharmaceutical Research, 7(7), pp.1144–1153. [Consulta: abril de 2020]. Disponible en: https://www.researchgate.net/publication/287509924_Bioprospecting_of_marine_derived_actinomycetes_with_special_reference_to_antimycobacterial_activity

Goransson, U., Sjogren, M., Svangard, E., Claeson, P. y Bohlin, L., 2004. Reversible antifouling effect of the cyclotide cycloviolacin O2 against barnacles. En: Journal of Natural Products, 67, pp.1287–1290. https://doi.org/10.1021/np0499719

Gupta, R.S., 2000. The phylogeny of proteobacteria: relationships to other eubacterial phyla and eukaryotes. En: FEMS Microbiology Reviews, 24, pp.367–402. https://doi.org/10.1111/j.1574-6976.2000.tb00547.x

Hagerman, A.E. y Butler, L.G., 1989. Choosing appropriate methods and standards for assaying tannin [En línea]. En: Journal of Chemical Ecology, 15, pp.1795–1810. [Consulta: abril de 2020]. Disponible en: https://link.springer.com/article/10.1007/BF01012267

Hammer, Ø. y& Harper, D.A.T., 2006. Paleontological Data. PAST: Paleontological Statistics Software Package for Education and Data Analysis [En línea]. Version 2.17c. [s.l]: [s.n.]. [Consulta: abril de 2020]. Disponible en: http://priede.bf.lu.lv/ftp/pub/TIS/datu_analiize/PAST/2.17c/download.html

Huang, X-Z., Xu, Y., Zhang, Y-F., Zhang, Y., Wong, H., Han, Z., Yin, Y. y Qian, P-Y., 2014. Nontoxic piperamides and their synthetic analogues as novel antifouling reagentes. En: Biofouling: The Journal of Bioadhesion and Biofilm Research, 30(4), pp.473-481. https://doi.org/10.1080/08927014.2014.889688

Holtum, R.E., 1950. The Zingiberaceae of the Malay peninsula. En: The Gardens' Bulletin, Singapore, 13(4), pp.1-50.

Jenkins, S.R. y Martins, G.M., 2010. Succession on hard substrata. En: Durr, S. y Thomason, J.C., eds. Biofouling. Oxford: Wiley. 456 p.

Karasawa, M.M.G. y Mohan, C., 2018. Fruits as prospective reserves of bioactive compounds: a review. En: Natural Products and Bioprospecting, 8, pp.335–346. https://doi.org/10.1007/s13659-018-0186-6

Katsuyama, I., Satuito, C.G., Maeda, T., Oonishi, M. yKumagai, T., 2005. The effect of DC-pulse electric stimulus on the swimming behavior of larvae of the freshwater mussel Limnopernafortuneiin flowing water within a pipe. En: Sessile Organisms, 2, pp.1–5. https://doi.org/10.4282/sosj.22.1

Kothari, V. y Seshadri, S., 2010. Antioxidant activity of seed extracts of Annona squamosa and Carica papaya. En: Nutrition & Food Science, 40(4), pp.403-408. https://doi.org/10.1108/00346651011062050

Konstantinou, I.K. y Albanis, T.A., 2004. Worldwide occurrence and effects of antifouling paint booster biocides in the aquatic environment: a review. En: Environment International, 30, pp.235–248. https://doi.org/10.1016/S0160-4120(03)00176-4

Leary, D.H., Li, R.W., Hamdan, L.J., Hervey, I.V.W.J., Lebedev, N., Wang, Z., Deschamps, J.R., Kusterbeck, A.W. y Vora, G.J., 2014. Integrated metagenomic and metaproteomic analyses of marine biofilm communities. En: Biofouling: The Journal of Bioadhesion and Biofilm Research, 30(10), pp.1211–1223. https://doi.org/10.1080/08927014.2014.977267

Lee, J.W., Nam, J.H., Kim, Y.H., Lee, K.H. y Lee, D.H., 2008. Bacterial communities in the initial stage of marine biofilm formation on artificial surfaces. En: Journal of Microbiology, 46(2), pp.174–182. https://doi.org/10.1007/s12275-008-0032-3

Liu, R.H., 2004. Potential synergy of phytochemicals in cancer prevention: mechanism of action. En: The Journal of Nutrition, 134(12), pp.3479S–3485S. https://doi.org/10.1093/jn/134.12.3479S

Liu, Y., Shao, X., Huang, J. y Li, H., 2019. Flame sprayed environmentally friendly high-density polyethylene. En: Hydrobiologia, 847, pp.45–60. https://doi.org/10.1016/j.matlet.2018.11.144

Macedo, A.J. y Abraham, W.R., 2009. Can infectious biofilm be controlled by blocking bacterial communication? En: Journal of Medicinal Chemistry, 5(6), pp.517–528. https://doi.org/10.2174/157340609790170515

Malafaia, C.B., Jardelino, A.C.S., Silva, A.G.S., Souza, E.B., Macedo, A.J., Correia, M.T.S. y Silva, M.V., 2017. Effects of Caatinga plant extracts in planktonic growth and biofilm formation in Ralstonia solanacearum. En: Microbial Ecology, 75(3), pp.555–561. https://doi.org/10.1007/s00248-017-1073-0

Manilal, A., Sujith, S., Sabarathnam, B., Seghal Kiran, G., Selvin, J., Shakir, C. y Lipton, A.P., 2010. Antifouling potentials of seaweeds collected from the Southwest Coast of India [En línea]. En: World Journal of Agricultural Sciences, 6(3), pp.243–248. [Consulta: abril de 2020]. Disponible en: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.415.4820&rep=rep1&type=p

Maranhão, R.A. y Stori, N., 2019. Estratégias de gestão ambiental adotadas pelo setor elétrico para controle do Limnoperna fortunei [En línea]. En: Brazillian mJournal of Business, 1(4), pp.1605-1613. [Consulta: abril de 2020]. Disponible en: https://www.brazilianjournals.com/index.php/BJB/article/view/4223/0

Maréchal, J-F. y Hellio, C., 2009. Challenges for the development of new non-toxic antifouling challenges for the development of new nontoxic antifouling solutions. En: International Journal of Molecular Sciences, 10, pp.4623–4637. https://doi.org/10.3390/ijms10114623

Medeiros-Costa, J.T., 2002. As espécies de plameiras (Arecaceae) do Estado de Pernambuco, Brasil. En: Tabarelli, M. y Silva, J.M.C, orgs. Diagnostico da biodiversidade de Pernambuco. v.1. Recife: SECTMA & Massangana. pp.229-236

Moodie, L.W.K., Cervin, G., Trepos, R., Labriere, C., Hellio, C., Pavia, H. y Svenson, J., 2018. Design and biological evaluation of antifouling dihydrostilbene oxime hybrids. En: Marine Biotechnology, 20(2), pp.257–267. https://doi.org/10.1007/s10126-018-9802-z

Muthusamy, S., Lundin, D., Branca, R.M.M.M., Baltar, F., Gonzalez, J.M., Lehtio, J. y Pinhassi, J., 2017. Comparative proteomics reveals signature metabolisms of exponentially growing and stationary phase marine bacteria. En: Environmental Microbiology, 19(6), pp.2301–2319. https://doi.org/10.1111/1462-2920.13725

Nandakumar, K. y Yano, T., 2003. Biofouling and its prevention: a comprehensive overview. En: Biocontrol Science, 8(4), pp.133–144. https://doi.org/10.4265/bio.8.133

Nadir, I., Rana, N.F., Ahmad, N.M., Tanweer, T., Batool, A., Taimoor, Z., Riaz, S. y Ali, S.M., 2020. Cannabinoids and terpenes as an antibacterial and antibiofouling promotor for PES water filtration membranes. En: Molecules, 25(3), pp.691. https://doi.org/10.3390/molecules25030691

Nandhini, S. y Revathi, K., 2016. Antifouling activity of extracts from mangroves against biofouling bacteria isolated from boats in Royapuram, Chennai, India. En: International Journal of Current Microbiology and Applied Sciences, 5(8), pp.324-335. https://doi.org/10.20546/IJCMAS.2016.508.035

Omae, I., 2003. General aspects of tin-free antifouling paints. En: Chemical Reviews, 103, pp.3431–3448. https://doi.org/10.1021/cr030669z

Pancharoen, O., Prawat, U. y Tuntiwachwuttikul, P., 2000. Phytochemistry of the zingiberaceae. En: Studies in Natural Products Chemistry, 23, pp.797–865. https://doi.org/10.1016/s1572-5995(00)80142-8

Pell, S.K.; Mitchell, J.D., Miller, A.J. y Lobova, T.A., 2011. Anacardiaceae. En: KubtzkiI, K., ed. The families and genera of vascular plants. Flowering plants, Eudicots - Sapindales, Cucurbitales, Myrtaceae. V.10. Berlin: Springer Verlag. pp.7-50.

Pérez, M., García, M., Blustein, G. y Stupak, M., 2007. Tannin and tannate from the quebracho tree: an eco-friendly alternative for controlling marine biofouling. En: Biofouling: The Journal of Bioadhesion and Biofilm Research, 23(3), pp.151-159. https://doi.org/10.1080/08927010701189484

Pérez, M., García, M., Sánchez, M., Stupak, M., Mazzuca, M., Palermo, J.A. y Blustein, G., 2014. Effect of secochiliolide acid isolated from the Patagonian shrub Nardophyllumbryoides as active component in antifouling paints. En: International Biodeterioration & Biodegradation, 89, pp.37e44. https://doi.org/10.1016/j.ibiod.2014.01.009

Pichlmaier, M., Marwitz, V., Ku¨hn, C., Niehaus, M., Klein, G., Bara, C., Haverich, A. y Abraham, W.-R., 2008. High prevalence of asymptomatic bacterial colonization of rhythm management devices. En: Europace, 10, pp.1067–1072. https://doi.org/10.1093/europace/eun191

Prabhakaran, S., Rajaram, R., Balasubramanian, V. y Mathivanan, K., 2012. Antifouling potentials of extracts from seaweeds, seagrasses and mangroves against primary biofilmm forming bacteria. En: Asian Pacific Journal of Tropical Biomedicine, 2(1), pp.S316–S322. https://doi.org/10.1016/S2221-1691(12)60181-6

Qian, P-Y., Xu, Y. y Fusetani, N., 2010. Natural products as antifouling compounds: recente progress and future perspectives. En: Biofouling: The Journal of Bioadhesion and Biofilm Research, 26(2), pp.223-234. https://doi.org/10.1080/08927010903470815

Ralston, E. y Swain, G., 2009. Bioinspiration—the solution for biofouling control? En: Bioinspiration and Biomimetics, 4, pp.015007. https://doi.org/10.1088/1748-3182/4/1/015007

Raven, P.H., Evert, R.F. y Eichhorn, S.E., 1992. Biologiavegetal. 5a ed. Nueva York: Worth Publishers. 876 p.

Salta, M., Wharton, J.A., Dennington, S.P., Stoodley, P. y Stokes, K.R., 2013. Anti-biofilm performance of three natural products against initial bacterial attachment. En: International Journal of Molecular Sciences, 14(11), pp.21757–21780. https://doi.org/10.3390/ijms141121757

Sandjo, L.P., Kuete, V., Tchangna, R.S., Efferth, T. y Ngadjui, B.T., 2014. Cytotoxic Benzophenanthridine and Furoquinoline Alkaloids from Zanthoxylum buesgenii (Rutaceae). En: Chemistry Central Journal, 8(61), pp.4. https://doi.org/10.1186/s13065-014-0061-4

Santos, C.P., Vicenzi, J., Berutti, F.A., Mansur, M.C.D., Pérez Bergmann, C., Raya Rodriguez, M.T., Vilar Nehrke, M. y Leite Zurita, M.L., 2012. Controle de bivalves com a utilização do ultrassom. En: Mansur, M.C.D., Santos, C.P., Pereira, D., Padula, P.I.C., Leite, Z.M.L., Raya, R.M.T., Vilar, N.M. y Aydos, B.P.E., eds. Moluscos límnicos invasores no Brasil. Biologia, prevenção, controle. Porto Alegre: Redes Editora. pp.339–341.

Schultz, M.P., Bendick, J.A., Holm, E.R. y Hertel, W.M., 2011. Economic impact of biofouling on a naval surface ship. En: Biofouling: The Journal of Bioadhesion and Biofilm Research, 27(1), pp.87–98. https://doi.org/10.1080/08927014.2010.542809

Sichaem, J., Jirasirichote, A., Sapasuntikul, K., Khumkratok, S., Sawasdee, P., Do, T.M.L. y Tip-pyang, S., 2014. New furoquinoline alkaloids from the leaves of Evodia lepta. En: Fitoterapia, 92, pp.270-273. https://doi.org/10.1016/j.fitote.2013.12.002

Soroldoni, S., Abreu, F., Castro, I.B., Duarte, F.A. y Pinho, G.L.L., 2017. Are antifouling paint particles a continuous source of toxic chemicals to the marine environment? En: Journal of Hazardous Materials, 15(330), pp.76–82. https://doi.org/10.1016/j.jhazmat.2017.02.001

Stupak, M.E., García, M.T. y Pérez, M.C., 2003. Non-toxic alternative compounds for marine antifouling paints. En: International Biodeterioration & Biodegradation, 52, pp.49-52. https://doi.org/10.1016/S0964-8305(03)00035-0

Takasawa, R., Etoh, H., Yagi, A., Sakata, K. e Ina, K., 1990. Nonylphenols as promising antifouling agents found by a simple bioassay method using the blue mussel, Mytilus edulis. En: Agricultural and Biological Chemistry, 54(6), pp.1607-1610. https://doi.org/10.1080/00021369.1990.10870144

Teixeira, V.L, 2010. Caracterização do estado da arte em biotecnologia marinha no Brasil [En línea]. Brasilia: Ministério da Saúde, Organização Pan-Americana da Saúde. Ministério da Ciência e Tecnologia. (Série B. Textos Básicos de Saúde). 134p. [Consulta: abril de 2020]. Disponible en: http://www.terrabrasilis.org.br/ecotecadigital/index.php/estantes/pesquisa/1731-caracterizacao-do-estado-da-arte-em-biotecnologia-marinha-no-brasil

Telegdi, J., Trif, L. y Romanszki, L., 2016. Smart anti-biofouling composite coatings for naval applications. En: Montemor, M.F., ed. Transport, structural, environmental and energy applications. Cambridge: Elsevier. (Woodhead Publishing Series in Composites Science and Engineering). https://doi.org/10.1016/B978-1-78242-283-9.00005-1

Trentin, D.S., Giordani, R.B., Zimmer, K.R., Silva, A.G., Silva, M.V., Correia, M.T.S., Baumvol, I.J.R. y Macedo, A.J., 2011. Potential of medicinal plants from the Brazilian semi-arid region (Caatinga) against Staphylococcus epidermidis planktonic and biofilm lifestyles. En: Journal of Ethnopharmacology, 137, pp.327–335. https://doi.org/10.1016/j.jep.2011.05.030

Uliano-Silva, M., Dondero, F., Dan Otto, T., Costa, I., Lima, N.C.B., Americo, J.A., Mazzoni, C.J., Prosdocimi, F. y Rebelo, M.F., 2018. A hybrid-hierarchical genome assembly strategy to sequence the invasive golden mussel, Limnopernafortunei. En: Giga Science, 7. https://doi.org/10.1093/gigascience/gix128

WHOI, Woods Hole Oceanographic Institution, 1952. Marine fouling and its prevention [En linea]. Annapolis: US Naval Institute. [Consulta: abril de 2020]. Disponible en: https://darchive.mblwhoilibrary.org/handle/1912/191

Williams, C.A. y Grayer, R.J., 2004. Anthocyanins and other flavonoids. En: Natural Product Reports, 21, pp.539–573. https://doi.org/10.1039/b311404j

Xu, Q., Barrios, C.A., Cutright, T. y Newby, B.Z., 2005. Evaluation of toxicity of capsaicin and zosteric acid and their potential application as antifoulants. En: Environmental Toxicology, 20(5), pp.467-74. https://doi.org/10.1002/tox.20134

Zhou, X., Zhang, Z., Xu, Y., Jin, C., He, H., Hao, X. y Qian, P.-Y., 2009. Flavone and isoflavone derivatives of terrestrial plants as larval settlement inhibitors of the barnacle Balanus amphitrite. En: Biofouling: The Journal of Bioadhesion and Biofilm Research, 25(1), pp.69–76. https://doi.org/10.1080/08927010802455941

Publicado

2021-04-08

Como Citar

Ochi Agostini, V., Lopes Leães Pinho, G., Muxagata, E., Macedo, A. J., Rey Bentos, F., Boccardi, L., Dabezies, M. J., & Brugnoli Oliveira, E. (2021). Tintas anti-incrustantes derivadas de plantas terrestres: uma solução segura para o meio ambiente no controle da bioincrustação. INNOTEC, (22 jul-dic), e559. https://doi.org/10.26461/22.01

Edição

Seção

Revisiones

Artigos mais lidos pelo mesmo(s) autor(es)