Avaliação da eficiência do biochar de bambu na remoção de microcistina-LR da água

Autores

DOI:

https://doi.org/10.26461/27.06

Palavras-chave:

biomassa, pirólise, carvão, adsorção, cianotoxina

Resumo

É essencial desenvolver adsorventes sustentáveis e econômicos para remover a microcistina-LR (MCLR). Bambusa Tuldoides foi pirolisado em temperaturas variadas (400, 500 e 600 °C) e tempos de residência (0,5 e 2 h) para produzir uma série de biochares. A capacidade de adsorção de MCLR observada (219 μg g-1 para uma amostra de 600B0.5) em condições de pH semelhantes às de uma planta de tratamento de água (pH = 7,6) é atribuída principalmente às interações hidrofóbicas, o apilamiento π-π e a naturalidade básica do biochar (pHpzc > 8). Uma análise exaustiva, que inclui FTIR, análise elementar e imediata, TG, SEM, adsorção de N2, porosimetria de Hg e espectroscopia Raman apoia esta descoberta. Além disso, para comparar o 600B0.5 com um carvão ativado disponível comercialmente, foi realizado um estudo dinâmico utilizando água contaminada real. A mostra 600B0.5 apresenta uma eficiência de remoção de 99,5 %, resultando em uma concentração final de 0.28 μg L-1, bem abaixo do valor de referência da Organização Mundial da Saúde de 1 μg L-1. 

Downloads

Não há dados estatísticos.

Referências

American Society for Testing and Materials, 2021. D3172-13, reapproved 2021: Proximate analysis of coal and coke. West Conshohocken: ASTM.

Carmichael, W. W. and Boyer, G. L., 2016. Health impacts from cyanobacteria harmful algae blooms: implications for the North American great lakes. In: Harmful Algae, 54, pp. 194–212. DOI: https://doi.org/10.1016/J.HAL.2016.02.002

Chaturvedi, K.; Singhwane, A.; Dhangar, M.; Mili, M.; Gorhae, N.; Naik, A.; Prashant, N.; Srivastava, A. K. and Verma, S., 2023. Bamboo for producing charcoal and biochar for versatile applications. En: Biomass Conv. Bioref. DOI: https://doi.org/10.1007/s13399-022-03715-3

Chen, B. and Chen, Z., 2009. Sorption of naphthalene and 1-naphthol by biochars of orange peels with different pyrolytic temperatures. In: Chemosphere, 76(1), pp. 127–133. DOI: https://doi.org/10.1016/j.chemosphere.2009.02.004

El Bouaidi, W.; Enaime, G.; Loudiki, M.; Yaacoubi, A.; Douma, M.; Ounas, A. and Lübken, M., 2022. Adsorbents used for microcystin removal from water sources: current knowledge and future prospects. In: Processes, 10(7), pp. 1–23. DOI: https://doi.org/10.3390/pr10071235

Fries, M. and Steele, A., 2010. Raman spectroscopy and confocal Raman imaging in mineralogy and petrography. In: Springer Series in Optical Sciences, 158, pp. 111–135. DOI: https://doi.org/10.1007/978-3-642-12522-5_6/

Frišták, V.; Laughinghouse, H. D. and Bell, S. M., 2020. The use of biochar and pyrolysed materials to improve water quality through microcystin sorption separation. In: Water (Switzerland), 12(10), pp. 1–19. DOI: https://doi.org/10.3390/w12102871

Li, J.; Cao, L.; Yuan, Y.; Wang, R.; Wen, Y. and Man, J., 2018. Comparative study for microcystin-LR sorption onto biochars produced from various plant- and animal-wastes at different pyrolysis temperatures: Influencing mechanisms of biochar properties. In: Bioresource Technology, 247(July 2017), pp. 794–803. DOI: https://doi.org/10.1016/j.biortech.2017.09.120

Li, L.; Qiu, Y.; Huang, J.; Li, F. and Sheng, G. D., 2014. Mechanisms and factors influencing adsorption of Microcystin-LR on biochars. In: Water, Air, and Soil Pollution, 225(12). DOI: https://doi.org/10.1007/s11270-014-2220-6

Liu, G.; Zheng, H.; Zhai, X. and Wang, Z., 2018. Characteristics and mechanisms of microcystin-LR adsorption by giant reed-derived biochars: Role of minerals, pores, and functional groups. En: Journal of Cleaner Production, 176, pp. 463–473. DOI: https://doi.org/10.1016/j.jclepro.2017.12.156

Manals-Cutiño, E.; Penedo-Medina, M. and Giralt-Ortega, G., 2011. Análisis termogravimétrico y térmico diferencial de diferentes biomasas vegetales [Online]. In: Tecnología Química, XXXI(2), pp. 36–43. [Accessed: 12 april 2024]. Retrieved from: https://www.redalyc.org/articulo.oa?id=445543773005

Melaram, R.; Newton, A. R. and Chafin, J., 2022. Microcystin contamination and toxicity: implications for agriculture and public health. In: Toxins, 14(5). DOI: https://doi.org/10.3390/TOXINS14050350

Odoemelam, S.; Onwu, F.; Uchechukwu, S. and Chinedu, M., 2015. Adsorption Isotherm Studies of Cd(ll) and Pb(ll) Ions from Aqueous Solutions by Bamboo-Based Activated Charcoal and Bamboo Dust. In: American Chemical Science Journal, 5(3), pp. 253–269. DOI: https://doi.org/10.9734/acsj/2015/14425

Park, J. A.; Kang, J. K.; Jung, S. M.; Choi, J. W.; Lee, S. H.; Yargeau, V. and Kim, S. B., 2020. Investigating Microcystin-LR adsorption mechanisms on mesoporous carbon, mesoporous silica, and their amino-functionalized form: Surface chemistry, pore structures, and molecular characteristics. In: Chemosphere, 247, 125811. DOI: https://doi.org/10.1016/j.chemosphere.2020.125811

Pavagadhi, S.; Tang, A. L. L.; Sathishkumar, M.; Loh, K. P. and Balasubramanian, R., 2013. Removal of microcystin-LR and microcystin-RR by graphene oxide: Adsorption and kinetic experiments. In: Water Research, 47(13), pp. 4621–4629. DOI: https://doi.org/10.1016/j.watres.2013.04.033

Pendleton, P.; Schumann, R. and Wong, S. H., 2001. Microcystin-LR Adsorption by activated carbon. In: Journal of Colloid and Interface Science, 240(1), pp. 1–8. DOI: https://doi.org/10.1006/JCIS.2001.7616

Ren, X.; Wang, Y.; Zhang, K.; Ding, Y.; Zhang, W.; Wu, M.; Xiao, B. and Gu, P., 2023. Transmission of microcystins in natural systems and resource processes: a review of potential risks to humans health. In: Toxins, 15(7). DOI: https://doi.org/10.3390/toxins15070448

Rouquerol, J.; Llewellyn, P. and Rouquerol, F., 2007. Is the bet equation applicable to microporous adsorbents? In: Studies in Surface Science and Catalysis, 160, pp. 49–56. DOI: https://doi.org/10.1016/S0167-2991(07)80008-5

Teng, W.; Wu, Z.; Fan, J.; Chen, H.; Feng, D.; Lv, Y.; Wang, J.; Asiri, A. M. and Zhao, D., 2013a. Ordered mesoporous carbons and their corresponding column for highly efficient removal of microcystin-LR. In: Energy and Environmental Science, 6(9), pp. 2765–2776. DOI: https://doi.org/10.1039/c3ee41775a

Teng, W.; Wu, Z.; Feng, D.; Fan, J.; Wang, J.; Wei, H.; Song, M. and Zhao, D., 2013b. Rapid and efficient removal of microcystins by ordered mesoporous silica. In: Environmental Science and Technology, 47(15), pp. 8633–8641. DOI: https://doi.org/10.1021/es400659b

Thommes, M.; Kaneko, K.; Neimark, A. V.; Olivier, J. P.; Rodriguez-Reinoso, F.; Rouquerol, J. and Sing, K. S. W., 2015. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). In: Pure and Applied Chemistry, 87(9–10), pp. 1051–1069. DOI: https://doi.org/10.1515/pac-2014-1117

Uruguay. Agencia Reguladora de Compras Estatales, 2022. Licitación abreviada 23041/2022 [Online]. Montevideo: Administración de las Obras Sanitarias del Estado. [Accessed: 24 april 2024]. Available at: https://www.comprasestatales.gub.uy/consultas/detalle/id/i366680

Uruguay. Ministerio de Vivienda Ordenamiento Territorial y Medioambiente, 2020. Informe, evolución de la calidad del agua en la cuenca del Río Santa Lucía [Online]. Montevideo: DINAMA. [Accessed: 12 april 2024]. Available at: https://www.gub.uy/ministerio-ambiente/sites/ministerio-ambiente/files/documentos/publicaciones/Informe-Santa-Lucia-2015-2019.pdf

Verma, S.; Kumar, P.; and Lavrenčič Štangar, U., 2023. A Perspective on removal of cyanotoxins from water through advanced oxidation processes. In: Global Challenges, 2300125, pp. 1–11. DOI: https://doi.org/10.1002/gch2.202300125

Wei, L. and Lu, J., 2021. Adsorption of microcystin-LR by rice straw biochars with different pyrolysis temperatures. In: Environmental Technology and Innovation, 23, 101609. DOI: https://doi.org/10.1016/j.eti.2021.101609

World Health Organization, 2020. Cyanobacterial toxins: microcystins. Background document for development of WHO Guidelines for drinking-water quality and Guidelines for safe recreational water environments [Online]. Ginebra: WHO. [Accessed: 24 april 2024]. Available at: https://apps.who.int/iris/handle/10665/338066

Yan, H.; Gong, A.; He, H.; Zhou, J.; Wei, Y. and Lv, L., 2006. Adsorption of microcystins by carbon nanotubes. In: Chemosphere, 62(1), pp. 142–148. DOI: https://doi.org/10.1016/j.chemosphere.2005.03.075

Zegura, B., 2016. An overview of the mechanisms of Microcystin-LR genotoxicity and potential carcinogenicity. In: Mini-Reviews in Medicinal Chemistry, 16(13), pp. 1042–1062. DOI: https://doi.org/10.2174/1389557516666160308141549

Zhang, H.; Zhu, G.; Jia, X.; Ding, Y.; Zhang, M.; Gao, Q.; Ciming, H. and Xu, S., 2011. Removal of microcystin-LR from drinking water using a bamboo-based charcoal adsorbent modified with chitosan. In: Journal of Environmental Sciences, 23(12), pp. 1983–1988. DOI: https://doi.org/10.1016/S1001-0742(10)60676-6

Publicado

2024-06-27

Como Citar

Castro, Y. ., Hernández, C., Pina, A. C., Míguez, D., & Casco, M. E. (2024). Avaliação da eficiência do biochar de bambu na remoção de microcistina-LR da água. INNOTEC, (27 ene-jun), e654. https://doi.org/10.26461/27.06

Edição

Seção

Artículos

Artigos mais lidos pelo mesmo(s) autor(es)