Four automation experiences in Metrology and their impact on quality risk and operational eficiency

Authors

  • Luis Pablo Constantino Departamento de Metrología, Laboratorio Tecnológico del Uruguay, LATU, Montevideo, Uruguay http://orcid.org/0000-0001-6857-9432
  • Alejandro Acquarone Departamento de Metrología, Laboratorio Tecnológico del Uruguay, LATU, Montevideo, Uruguay http://orcid.org/0000-0001-6048-0200
  • Marcos Mazini Instituto de Física, Facultad de Ingeniería, Universidad de la República, Udelar, Montevideo, Uruguay http://orcid.org/0000-0002-8482-1855
  • Ofelia Robatto Departamento de Metrología, Laboratorio Tecnológico del Uruguay, LATU, Montevideo, Uruguay http://orcid.org/0000-0001-6245-2959
  • Verónica Ponticorbo Departamento de Metrología, Laboratorio Tecnológico del Uruguay, LATU, Montevideo, Uruguay
  • Simone Fajardo Departamento de Metrología, Laboratorio Tecnológico del Uruguay, LATU, Montevideo, Uruguay http://orcid.org/0000-0003-4276-2882

DOI:

https://doi.org/10.26461/16.03

Keywords:

Automation, instrumentation, software, Millitron, Mahr, ASL, SPRT

Abstract

Sofware development aiming measurement automation does not necessarily have a process modernizing purpose but, in most cases, focuses on reducing the risk associated with human errors by transcribing or reading data, as well as reducing the operating time to face the growing demand for services. This paper describes four custom sofware developments for the automation of measurements in temperature, length and pH laboratories, conducted at the National Metrology Laboratory of Uruguay (LATU). The general requirements of involved applications and instruments, the particular needs of each process studied, the difculties confronted during development stages with their different solutions, and most relevant features of final product for each application are presented here.
A method to measure the impact on the reduction of time and risk in each automated process is also suggested.

Downloads

Download data is not yet available.

References

ASTM International, 2004. ASTM E11: Standard specifcation for woven wire test sieve cloth and test sieves. Filadelfa: ASTM.

Batagelj, V., Bojkovski, J. y Drnovšek, J., 2008. Sofware integration in national measurement-standards laboratories. En: IET Sci. Meas. Technol., 2(2), pp.100-106.

Baucke, F.G.K., 1994. Differential-potenciometric cell for the restandarization of pH reference materials. En: Journal of Electroanalytical Chemistry, (368), pp. 67-75.

BIPM, IEC, IFCC, ILAC, ISO, IUPAC, IUPAP y OIML, 2008. JCGM 100:2008 GUM 1995 with minor corrections. Evaluation of measurement data — Guide to the expression of uncertainty in measurement. s.l.: JCGM.

International Organization for Standarization, 1998. ISO 3650: Geometrical Product Specifcations (GPS) -- Length standards -- Gauge blocks. Ginebra: ISO.

Panko, R., 2015. What we don’t know about spreadsheet errors today: the facts, why we don’t believe them, and what we need to do. En: EuSpRIG. Proceedings of the EuSpRIG 2015 conference. ISBN: 978-1-905404-52-0.

Preston Tomas, H., 1990. Te international temperature scale of 1990 (ITS-90). En: Metrologia, 27, pp.3-10,

Tasić, T. y Grottkerb, U., 2006. An overview of guidance documents for sofware in metrological applications. En: Journal Computer Standards & Interfaces Archive, 28(3), pp.256-269.

Published

2018-10-31

How to Cite

Constantino, L. P., Acquarone, A., Mazini, M., Robatto, O., Ponticorbo, V., & Fajardo, S. (2018). Four automation experiences in Metrology and their impact on quality risk and operational eficiency. INNOTEC, (16 jul-dic), 56–63. https://doi.org/10.26461/16.03

Issue

Section

Articles