Pitanga anthocyanins as sensitizers for DSSC

Authors

  • Micaela González Steffano Laboratorio de Biomateriales, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Uruguay, (julio-diciembre 2020). https://orcid.org/0000-0002-3718-7716
  • Erika Álvarez Laboratorio de Biomateriales, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Uruguay, (julio-diciembre 2020). https://orcid.org/0000-0002-4607-0798
  • Paola Sosa Laboratorio de Biomateriales, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Uruguay, (julio-diciembre 2020). https://orcid.org/0000-0003-1799-0891
  • Camila Vázquez Laboratorio de Biomateriales, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Uruguay, (julio-diciembre 2020). https://orcid.org/0000-0003-2857-9707
  • María Fernanda Cerdá Bresciano Laboratorio de Biomateriales, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Uruguay https://orcid.org/0000-0002-9049-2728

DOI:

https://doi.org/10.26461/23.02

Keywords:

indigenous fruits, photovoltaic, metals, electrochemistry

Abstract

Purified anthocyanin extracts were obtained from pitanga fruits (Eugenia Uniflora L.) and characterized by visible spectroscopy and FTIR, and the stability up to 85 ° C evaluated. These anthocyanins were mixed with different amounts of Mg2 +, Al3 +, Cr3+ at different working pH, finding the optimal complexation ratio for each system. The systems were also characterized by redox measurements, obtaining an oxidation potential close to 1 V for all cases, confirming the favourable characteristics of the compounds evaluated for their use in DSSC cells. FTIR confirmed the binding of anthocyanins and metal complexes to TiO2. The DSSC cells evaluated showed maximum conversion efficiency values of 0.24 % in complexes with chromium.

Downloads

Download data is not yet available.

References

Bisquert, J., Cahen, D., Hodes, G., Rühle, S. y Zaban, A., 2004. Physical chemical principles of photovoltaic conversion with nanoparticulate mesoporous dye-sensitized solar cells. En: J. Phys. Chem. B., 108(24), pp.8106-8118. DOI: https://doi.org/10.1021/jp0359283

Cerdá, M.F. y Enciso, P., 2014. Caracterización de las antocianinas de la flor de ceibo como sensibilizadores naturales para su uso en celdas fotovoltaicas. En: INNOTEC, 9, pp.91-96. DOI: https://doi.org/10.26461/09.12

Cerdá, M.F., Méndez, E., Malacrida, L., Zinola, C.F., Melián, C., Martins, M.E., Castro Luna, A.M. y Kremer, C., 2002. Redox behavior of Re(V)–amino acid containing complexes. En: J. Colloid Interf. Sci., 249(2), pp.366–371. DOI: https://doi.org/10.1006/jcis.2002.8228

Chen, C.Y., Wang, M.K., Li, J.Y., Pootrakulchote, N., Alibabaei, L., Ngoc-le, C.H., Decoppet, J.D., Tsai, J.H., Grätzel, C., Wu, C.G., Zakeeruddin, S.M. y Grätzel, M., 2009. Highly efficient light-harvesting Ruthenium sensitizer for thin-film dye-sensitized solar cells. En: ACS Nano, 3(10), pp.3103-3109. DOI: https://doi.org/10.1021/nn900756s

De Araújo Santiago, MC.P., Senna Gouvêa, AC.M., de Oliveira Godoy, R.L., Galhardo Borguini, R., Pacheco, S., Nogueira R.I., de Mattos do Nascimento, L. y Pereira Freitas, S., 2014. Analytical standards production for the analysis of pomegranate anthocyanins by HPLC. En: Braz. J. Food Technol., 17(1), pp.51-57. DOI: https://doi.org/10.1590/bjft.2014.008

Devadiga, D., Selvakumar, M., Shetty, P. y Santosh, M.S., 2021. Dye-sensitized solar cell for indoor applications: a mini-review. En: J. Elec. Materi., 50, pp.3187–3206. DOI: https://doi.org/10.1007/s11664-021-08854-3

Einbond, L.S., Reynertson, K.A., DongLuo, X., Basile, M.J. y Kennelly, E.J., 2004. Anthocyanin antioxidants from edible fruits. En: Food Chemistry, 84(1), pp.23–28. DOI: https://doi.org/10.1016/S0308-8146(03)00162-6

Enciso, P., Decoppet, J.D., Grätzel, M., Wörner, M., Cabrerizo, F.M., Cerdá, M.F., 2017. A cockspur for the DSS cells: Erythrina crista-galli sensitizers. En: Spectrochim. Acta A: Mol. Biomol. Spectros., 176, pp.91-98. DOI: https://doi.org/10.1016/j.saa.2017.01.002

Gao, F., Wang, Y., Shi, D., Zhang, J., Wang, M.K., Jing, X.Y., Humphry-Baker, R., Wang, P., Zakeeruddin, S.M. y Grätzel, M., 2008. Enhance the optical absorptivity of nanocrystalline TiO2 film with high molar extinction coefficient Ruthenium sensitizers for high performance dye-sensitized solar cells. En: J. Am. Chem. Soc., 130(32), pp.10720-10728. DOI: https://doi.org/10.1021/ja801942j

Giusti, M.M., Rodríguez-Saona, L.E. y Wrolstad, R.E., 1999. Molar absorptivity and color characteristics of acylated and non-acylated pelargonidin-based anthocyanins. En: J Agric Food Chem., 47(11), pp.4631-7. DOI: https://doi.org/10.1021/jf981271k

Grätzel, C. y Zakeeruddin, S.M., 2013. Recent trends in mesoscopic solar cells based on molecular and nanopigment light harvesters. En: Mater. Today., 16(1-2), pp.11-18. DOI: https://doi.org/10.1016/j.mattod.2013.01.020

Golshan, M., Osfouri, S., Azin, R., Jalali, T. y Moheimani, N.R., 2021. Co-sensitization of natural and low-cost dyes for efficient panchromatic light-harvesting using dye-sensitized solar cells. En: J. Photochem. Photobiol. A Chem., 417, 113345. DOI: https://doi.org/10.1016/j.jphotochem.2021.113345

Marizcurrena, J.J., Castro-Sowinski, S. y Cerdá M.F., 2021. Improving the performance of dye-sensitized solar cells using nanoparticles and a dye produced by an Antarctic bacterium. En: Environmental Sustainability, 4, pp.711-721. DOI: https://doi.org/10.1007/s42398-021-00168-8

Mozetic, B., Trebse, P. y Hribar, J., 2002. Determination and Quantitation of Anthocyanins and Hydroxycinnamic Acids in Different Cultivars of Sweet Cherries (Prunus avium L.) from Nova Gorica Region (Slovenia). En: Food Technol. Biotechnol., 40(3), pp.207–212.

Muñoz-García, A.B., Benesperi, I., Boschloo, G., Concepcion, J.J., Delcamp, J.H., Gibson, E.A., Meyer, G.J., Pavone, M., Pettersson, H., Hagfeldt, A. y Freitag, M., 2021. Dye-sensitized solar cells strike back. En: Chem. Soc. Rev., 50, pp.12450-12550. DOI: https://doi.org/10.1039/D0CS01336F

Narayan, M.R., 2012. Review: dye sensitized solar cells based on natural photosensitizers. En: Renew. Sustain.Energy Rev., 16(1), pp.208-215. DOI: https://doi.org/10.1016/j.rser.2011.07.148

O´Regan, B. y Grätzel, M., 1991. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. En: Nature, 353, pp.737-740. DOI: https://doi.org/10.1038/353737a0

Orona-Navar, A., Aguilar-Hernández, I., Nigam, K.D.P., Cerdán-Pasarán, A. y Ornelas-Soto, N., 2021. Alternative sources of natural pigments for dye-sensitized solar cells: algae, cyanobacteria, bacteria, archaea and fungi. En: J. Biotechnol., 332, pp.29-53. DOI: https://doi.org/10.1016/j.jbiotec.2021.03.013

Pavia, D.L., Lampman, G.M., y Kriz, G.S., eds., 2001. Introduction to spectroscopy. Boston: Thomson Learning Inc. ISBN: 0-03-031961-7.

Renny, J.S., Tomasevich, L.L., Tallmadge, E.H. y Collum, D.B., 2013. Method of continuous variations: applications of job plots to the study of molecular associations in organometallic chemistry. En: Angew. Chem. Int. Ed. Engl., 52(46), pp.11998-12013. DOI: https://doi.org/10.1002/anie.201304157

Schmidt, H.O., Rockett, F.C., Pagno, C.H., Possa, J., Assis, R.Q., de Oliveira, V.R., da Silva, V.L., Flôres, S.H. y Rios, A.O., 2019. Vitamin and bioactive compound diversity of seven fruit species from south Brazil. En: J. Sci. Food Agric., 99(7), pp.3307-3317. DOI: 10.1002/jsfa.9544

Sinela, A., Rawat, N., Mertz, C., Achir, N., Fulcrand, H. y Dornier, M., 2017. Anthocyanins degradation during storage of Hibiscus sabdariffa extract and evolution of its degradation products. En: Food Chem., 214, pp.234-241. DOI: https://doi.org/10.1016/j.foodchem.2016.07.071

Sowmya, S., Prakash, P., Ruba, N., Prabu, A.N., Janarthanan, B., Reddy, V.R.M. y Hegazy, H.H., 2021. Fabrication of natural dye-sensitized solar cells with bulk TiO2 instead of nano-sized. En: Optik., 242, 166205. DOI: https://doi.org/10.1016/j.ijleo.2020.166205

Takeda, K., 2006. Blue metal complex pigments involved in blue flower color. En: Proc. Jpn. Acad. Ser. B Phys. Biol., 82(4), pp.142-54. DOI: 10.2183/pjab.82.142

Tarone, A.G., Cazarin, C.B.B. y Marostica Junior, M.R., 2020. Anthocyanins: new techniques and challenges in microencapsulation. En: Food Research Int., 133, 109092. DOI: https://doi.org/10.1016/j.foodres.2020.109092

Yahya, M., Bouziani, A., Ocak, C., Seferoğlu, Z. y Sillanpää, M., 2021. Organic/metal-organic photosensitizers for dye-sensitized solar cells (DSSC): Recent developments, new trends, and future perceptions. En: Dyes and Pigments, 192, 109227. DOI: https://doi.org/10.1016/j.dyepig.2021.109227

Yañuk, J.G., Cabrerizo, F.M., Dellatorre, F.G. y Cerdá, M F, 2020. Photosensitizing role of R-phycoerythrin red protein and b-carboline alkaloids in Dye Sensitized Solar Cell. Electrochemical and spectroscopic characterization. En: Energy Reports, 6(4), pp.25-36. DOI: https://doi.org/10.1016/j.egyr.2019.10.045

Yella, A., Lee, H.W., Tsao, H.N., Yi,Ch., Chandiran, A.K., Nazeeruddin, M.K., Diau,E.W., Yeh, Ch.Y., Zakeeruddin, S.M. y Grätzel, M., 2011. Porphyrin-sensitized solar cells with Cobalt (II/III)–based redox electrolyte exceed 12 percent efficiency. En: Science, 334, pp.629-634. DOI: 10.1126/science.1209688

Yum, J.H., Moon, S.J., Karthikeyan, C.S., Wietasch, H., Thelakkat, M., Zakeeruddin, S.M., Nazeeruddin, Md.K. y Grätzel, M., 2012. Heteroleptic ruthenium complex containing substituted triphenylamine hole-transport unit as sensitizer for stable dye-sensitized solar cell. En: Nano Energy, 1(1), pp.6-12. DOI: https://doi.org/10.1016/j.nanoen.2011.08.004

Zhang, D., Stojanovic, M., Ren, Y., Cao, Y., Eickemeyer, F.T., Socie, E., Vlachopoulos, N., Moser, J.E., Zakeeruddin, S.M., Hagfeldt, A. y Grätzel, M., 2021. A molecular photosensitizer achieves a Voc of 1.24 V enabling highly efficient and stable dye-sensitized solar cells with copper(II/I)-based electrolyte. En: Nat Commun., 12, p. 1777. DOI: https://doi.org/10.1038/s41467-021-21945-3

Zhou, H., Wu, L., Gao, Y. y Ma, T., 2011. Dye-sensitized solar cells using 20 natural dyes as sensitizers. En: J. Photochem. Photobiol. A Chem., 219(2-3), pp.188–19. DOI: https://doi.org/10.1016/j.jphotochem.2011.02.008

Published

2022-04-05

How to Cite

González Steffano, M., Álvarez, E., Sosa, P., Vázquez, C., & Cerdá Bresciano, M. F. (2022). Pitanga anthocyanins as sensitizers for DSSC. INNOTEC, (23 ene-jun), e584. https://doi.org/10.26461/23.02

Issue

Section

Articles

Most read articles by the same author(s)