Antocianinas Pitanga como fotossensibilizadores de células DSSC

Autores

  • Micaela González Steffano Laboratorio de Biomateriales, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Uruguay, (julio-diciembre 2020). https://orcid.org/0000-0002-3718-7716
  • Erika Álvarez Laboratorio de Biomateriales, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Uruguay, (julio-diciembre 2020). https://orcid.org/0000-0002-4607-0798
  • Paola Sosa Laboratorio de Biomateriales, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Uruguay, (julio-diciembre 2020). https://orcid.org/0000-0003-1799-0891
  • Camila Vázquez Laboratorio de Biomateriales, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Uruguay, (julio-diciembre 2020). https://orcid.org/0000-0003-2857-9707
  • María Fernanda Cerdá Bresciano Laboratorio de Biomateriales, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Uruguay https://orcid.org/0000-0002-9049-2728

DOI:

https://doi.org/10.26461/23.02

Palavras-chave:

fruta nativa, fotovoltaico, metais, eletroquímica

Resumo

Extratos de antocianinas purificadas foram obtidos de frutos de pitanga (Eugenia Uniflora L.) e caracterizados por espectroscopia de visível e FTIR. Sua estabilidade com a temperatura foi avaliada até 85 ° C. Essas antocianinas foram misturadas com diferentes quantidades de Mg2+, Al3+, Cr3+ em diferentes pHs de trabalho, encontrando a razão de complexação ideal para cada sistema. Os sistemas também foram caracterizados por medidas redox, obtendo um potencial de oxidação próximo a 1 V para todos os casos, o que confirma as características promissoras dos compostos avaliados para seu uso em células DSSC. A ligação de antocianinas e complexos metálicos ao TiO2 foi confirmada por FTIR. As células DSSC avaliadas apresentaram valores máximos de eficiência de conversão de 0,24 % no caso dos complexos com cromo.

Downloads

Não há dados estatísticos.

Referências

Bisquert, J., Cahen, D., Hodes, G., Rühle, S. y Zaban, A., 2004. Physical chemical principles of photovoltaic conversion with nanoparticulate mesoporous dye-sensitized solar cells. En: J. Phys. Chem. B., 108(24), pp.8106-8118. DOI: https://doi.org/10.1021/jp0359283

Cerdá, M.F. y Enciso, P., 2014. Caracterización de las antocianinas de la flor de ceibo como sensibilizadores naturales para su uso en celdas fotovoltaicas. En: INNOTEC, 9, pp.91-96. DOI: https://doi.org/10.26461/09.12

Cerdá, M.F., Méndez, E., Malacrida, L., Zinola, C.F., Melián, C., Martins, M.E., Castro Luna, A.M. y Kremer, C., 2002. Redox behavior of Re(V)–amino acid containing complexes. En: J. Colloid Interf. Sci., 249(2), pp.366–371. DOI: https://doi.org/10.1006/jcis.2002.8228

Chen, C.Y., Wang, M.K., Li, J.Y., Pootrakulchote, N., Alibabaei, L., Ngoc-le, C.H., Decoppet, J.D., Tsai, J.H., Grätzel, C., Wu, C.G., Zakeeruddin, S.M. y Grätzel, M., 2009. Highly efficient light-harvesting Ruthenium sensitizer for thin-film dye-sensitized solar cells. En: ACS Nano, 3(10), pp.3103-3109. DOI: https://doi.org/10.1021/nn900756s

De Araújo Santiago, MC.P., Senna Gouvêa, AC.M., de Oliveira Godoy, R.L., Galhardo Borguini, R., Pacheco, S., Nogueira R.I., de Mattos do Nascimento, L. y Pereira Freitas, S., 2014. Analytical standards production for the analysis of pomegranate anthocyanins by HPLC. En: Braz. J. Food Technol., 17(1), pp.51-57. DOI: https://doi.org/10.1590/bjft.2014.008

Devadiga, D., Selvakumar, M., Shetty, P. y Santosh, M.S., 2021. Dye-sensitized solar cell for indoor applications: a mini-review. En: J. Elec. Materi., 50, pp.3187–3206. DOI: https://doi.org/10.1007/s11664-021-08854-3

Einbond, L.S., Reynertson, K.A., DongLuo, X., Basile, M.J. y Kennelly, E.J., 2004. Anthocyanin antioxidants from edible fruits. En: Food Chemistry, 84(1), pp.23–28. DOI: https://doi.org/10.1016/S0308-8146(03)00162-6

Enciso, P., Decoppet, J.D., Grätzel, M., Wörner, M., Cabrerizo, F.M., Cerdá, M.F., 2017. A cockspur for the DSS cells: Erythrina crista-galli sensitizers. En: Spectrochim. Acta A: Mol. Biomol. Spectros., 176, pp.91-98. DOI: https://doi.org/10.1016/j.saa.2017.01.002

Gao, F., Wang, Y., Shi, D., Zhang, J., Wang, M.K., Jing, X.Y., Humphry-Baker, R., Wang, P., Zakeeruddin, S.M. y Grätzel, M., 2008. Enhance the optical absorptivity of nanocrystalline TiO2 film with high molar extinction coefficient Ruthenium sensitizers for high performance dye-sensitized solar cells. En: J. Am. Chem. Soc., 130(32), pp.10720-10728. DOI: https://doi.org/10.1021/ja801942j

Giusti, M.M., Rodríguez-Saona, L.E. y Wrolstad, R.E., 1999. Molar absorptivity and color characteristics of acylated and non-acylated pelargonidin-based anthocyanins. En: J Agric Food Chem., 47(11), pp.4631-7. DOI: https://doi.org/10.1021/jf981271k

Grätzel, C. y Zakeeruddin, S.M., 2013. Recent trends in mesoscopic solar cells based on molecular and nanopigment light harvesters. En: Mater. Today., 16(1-2), pp.11-18. DOI: https://doi.org/10.1016/j.mattod.2013.01.020

Golshan, M., Osfouri, S., Azin, R., Jalali, T. y Moheimani, N.R., 2021. Co-sensitization of natural and low-cost dyes for efficient panchromatic light-harvesting using dye-sensitized solar cells. En: J. Photochem. Photobiol. A Chem., 417, 113345. DOI: https://doi.org/10.1016/j.jphotochem.2021.113345

Marizcurrena, J.J., Castro-Sowinski, S. y Cerdá M.F., 2021. Improving the performance of dye-sensitized solar cells using nanoparticles and a dye produced by an Antarctic bacterium. En: Environmental Sustainability, 4, pp.711-721. DOI: https://doi.org/10.1007/s42398-021-00168-8

Mozetic, B., Trebse, P. y Hribar, J., 2002. Determination and Quantitation of Anthocyanins and Hydroxycinnamic Acids in Different Cultivars of Sweet Cherries (Prunus avium L.) from Nova Gorica Region (Slovenia). En: Food Technol. Biotechnol., 40(3), pp.207–212.

Muñoz-García, A.B., Benesperi, I., Boschloo, G., Concepcion, J.J., Delcamp, J.H., Gibson, E.A., Meyer, G.J., Pavone, M., Pettersson, H., Hagfeldt, A. y Freitag, M., 2021. Dye-sensitized solar cells strike back. En: Chem. Soc. Rev., 50, pp.12450-12550. DOI: https://doi.org/10.1039/D0CS01336F

Narayan, M.R., 2012. Review: dye sensitized solar cells based on natural photosensitizers. En: Renew. Sustain.Energy Rev., 16(1), pp.208-215. DOI: https://doi.org/10.1016/j.rser.2011.07.148

O´Regan, B. y Grätzel, M., 1991. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. En: Nature, 353, pp.737-740. DOI: https://doi.org/10.1038/353737a0

Orona-Navar, A., Aguilar-Hernández, I., Nigam, K.D.P., Cerdán-Pasarán, A. y Ornelas-Soto, N., 2021. Alternative sources of natural pigments for dye-sensitized solar cells: algae, cyanobacteria, bacteria, archaea and fungi. En: J. Biotechnol., 332, pp.29-53. DOI: https://doi.org/10.1016/j.jbiotec.2021.03.013

Pavia, D.L., Lampman, G.M., y Kriz, G.S., eds., 2001. Introduction to spectroscopy. Boston: Thomson Learning Inc. ISBN: 0-03-031961-7.

Renny, J.S., Tomasevich, L.L., Tallmadge, E.H. y Collum, D.B., 2013. Method of continuous variations: applications of job plots to the study of molecular associations in organometallic chemistry. En: Angew. Chem. Int. Ed. Engl., 52(46), pp.11998-12013. DOI: https://doi.org/10.1002/anie.201304157

Schmidt, H.O., Rockett, F.C., Pagno, C.H., Possa, J., Assis, R.Q., de Oliveira, V.R., da Silva, V.L., Flôres, S.H. y Rios, A.O., 2019. Vitamin and bioactive compound diversity of seven fruit species from south Brazil. En: J. Sci. Food Agric., 99(7), pp.3307-3317. DOI: 10.1002/jsfa.9544

Sinela, A., Rawat, N., Mertz, C., Achir, N., Fulcrand, H. y Dornier, M., 2017. Anthocyanins degradation during storage of Hibiscus sabdariffa extract and evolution of its degradation products. En: Food Chem., 214, pp.234-241. DOI: https://doi.org/10.1016/j.foodchem.2016.07.071

Sowmya, S., Prakash, P., Ruba, N., Prabu, A.N., Janarthanan, B., Reddy, V.R.M. y Hegazy, H.H., 2021. Fabrication of natural dye-sensitized solar cells with bulk TiO2 instead of nano-sized. En: Optik., 242, 166205. DOI: https://doi.org/10.1016/j.ijleo.2020.166205

Takeda, K., 2006. Blue metal complex pigments involved in blue flower color. En: Proc. Jpn. Acad. Ser. B Phys. Biol., 82(4), pp.142-54. DOI: 10.2183/pjab.82.142

Tarone, A.G., Cazarin, C.B.B. y Marostica Junior, M.R., 2020. Anthocyanins: new techniques and challenges in microencapsulation. En: Food Research Int., 133, 109092. DOI: https://doi.org/10.1016/j.foodres.2020.109092

Yahya, M., Bouziani, A., Ocak, C., Seferoğlu, Z. y Sillanpää, M., 2021. Organic/metal-organic photosensitizers for dye-sensitized solar cells (DSSC): Recent developments, new trends, and future perceptions. En: Dyes and Pigments, 192, 109227. DOI: https://doi.org/10.1016/j.dyepig.2021.109227

Yañuk, J.G., Cabrerizo, F.M., Dellatorre, F.G. y Cerdá, M F, 2020. Photosensitizing role of R-phycoerythrin red protein and b-carboline alkaloids in Dye Sensitized Solar Cell. Electrochemical and spectroscopic characterization. En: Energy Reports, 6(4), pp.25-36. DOI: https://doi.org/10.1016/j.egyr.2019.10.045

Yella, A., Lee, H.W., Tsao, H.N., Yi,Ch., Chandiran, A.K., Nazeeruddin, M.K., Diau,E.W., Yeh, Ch.Y., Zakeeruddin, S.M. y Grätzel, M., 2011. Porphyrin-sensitized solar cells with Cobalt (II/III)–based redox electrolyte exceed 12 percent efficiency. En: Science, 334, pp.629-634. DOI: 10.1126/science.1209688

Yum, J.H., Moon, S.J., Karthikeyan, C.S., Wietasch, H., Thelakkat, M., Zakeeruddin, S.M., Nazeeruddin, Md.K. y Grätzel, M., 2012. Heteroleptic ruthenium complex containing substituted triphenylamine hole-transport unit as sensitizer for stable dye-sensitized solar cell. En: Nano Energy, 1(1), pp.6-12. DOI: https://doi.org/10.1016/j.nanoen.2011.08.004

Zhang, D., Stojanovic, M., Ren, Y., Cao, Y., Eickemeyer, F.T., Socie, E., Vlachopoulos, N., Moser, J.E., Zakeeruddin, S.M., Hagfeldt, A. y Grätzel, M., 2021. A molecular photosensitizer achieves a Voc of 1.24 V enabling highly efficient and stable dye-sensitized solar cells with copper(II/I)-based electrolyte. En: Nat Commun., 12, p. 1777. DOI: https://doi.org/10.1038/s41467-021-21945-3

Zhou, H., Wu, L., Gao, Y. y Ma, T., 2011. Dye-sensitized solar cells using 20 natural dyes as sensitizers. En: J. Photochem. Photobiol. A Chem., 219(2-3), pp.188–19. DOI: https://doi.org/10.1016/j.jphotochem.2011.02.008

Publicado

2022-04-05

Como Citar

González Steffano, M., Álvarez, E., Sosa, P., Vázquez, C., & Cerdá Bresciano, M. F. (2022). Antocianinas Pitanga como fotossensibilizadores de células DSSC. INNOTEC, (23 ene-jun), e584. https://doi.org/10.26461/23.02

Edição

Seção

Artículos